Source code for prody.atomic.bond
# -*- coding: utf-8 -*-
"""This module defines :class:`Bond` for dealing with bond information provided
by using the :meth:`.AtomGroup.setBonds`or :meth:`.AtomGroup.inferBonds` method."""
from numbers import Integral
import numpy as np
__all__ = ['Bond']
[docs]class Bond(object):
"""A pointer class for bonded atoms. Following built-in functions are
customized for this class:
* :func:`len` returns bond length, i.e. :meth:`getLength`
* :func:`iter` yields :class:`~.Atom` instances"""
__slots__ = ['_ag', '_acsi', '_indices']
def __init__(self, ag, indices, acsi=None):
self._ag = ag
self._indices = np.array(indices)
if acsi is None:
self._acsi = ag.getACSIndex()
else:
self._acsi = acsi
def __repr__(self):
one, two = self._indices
names = self._ag._getNames()
return '<Bond: {0}({1})--{2}({3}) from {4}>'.format(
names[one], one, names[two], two, str(self._ag))
def __str__(self):
one, two = self._indices
names = self._ag._getNames()
return '{0}({1})--{2}({3})'.format(
names[one], one, names[two], two)
def __eq__(self, other):
return (isinstance(other, Bond) and other.getAtomGroup() is self._ag
and (np.all(other.getIndices() == self._indices) or
np.all(other.getIndices() == list(reversed(self._indices)))))
def __ne__(self, other):
return not self.__eq__(other)
def __len__(self):
return self.getLength()
def __iter__(self):
for index in self._indices:
yield self._ag[index]
[docs] def getAtomGroup(self):
"""Returns atom group."""
return self._ag
[docs] def getAtoms(self):
"""Returns bonded atoms."""
return (self._ag[self._indices[0]], self._ag[self._indices[1]])
[docs] def getIndices(self):
"""Returns indices of bonded atoms."""
return self._indices.copy()
[docs] def getLength(self):
"""Returns bond length."""
vector = self.getVector()
return np.multiply(vector, vector, vector).sum() ** 0.5
[docs] def getVector(self):
"""Returns bond vector that originates from the first atom."""
one, two = self._indices
acsi = self.getACSIndex()
return self._ag._coords[acsi, two] - self._ag._coords[acsi, one]
[docs] def getACSIndex(self):
"""Returns index of the coordinate set."""
acsi = self._acsi
if acsi >= self._ag._n_csets:
raise ValueError('{0} has fewer coordsets than assumed by {1}'
.format(str(self._ag), str(self)))
return acsi
[docs] def setACSIndex(self, index):
"""Set the coordinate set at *index* active."""
if self._ag._coords is None:
raise AttributeError('coordinates are not set')
if not isinstance(index, Integral):
raise TypeError('index must be an integer')
n_csets = self._ag._n_csets
if n_csets <= index or n_csets < abs(index):
raise IndexError('coordinate set index is out of range')
if index < 0:
index += n_csets
self._acsi = index
def evalBonds(bonds, n_atoms):
"""Returns an array mapping atoms to their bonded neighbors and an array
that stores number of bonds made by each atom."""
numbonds = np.bincount(bonds.reshape((bonds.shape[0] * 2)))
bmap = np.zeros((n_atoms, numbonds.max()), int)
bmap.fill(-1)
index = np.zeros(n_atoms, int)
for bond in bonds:
a, b = bond
bmap[a, index[a]] = b
bmap[b, index[b]] = a
index[bond] += 1
return bmap, numbonds
def trimBonds(bonds, indices):
"""Returns bonds between atoms at given indices."""
iset = set(indices)
bonds = [bond for bond in bonds if bond[0] in iset and bond[1] in iset]
if bonds:
newindices = np.zeros(indices.max()+1, int)
newindices[indices] = np.arange(len(indices))
return newindices[np.array(bonds)]