Source code for prody.compounds.pdbligands

# -*- coding: utf-8 -*-
"""This module defines functions for fetching PDB ligand data."""

from os.path import isdir, isfile, join, split, splitext

import numpy as np

from prody import LOGGER, SETTINGS, getPackagePath, PY3K
from prody.atomic import AtomGroup, ATOMIC_FIELDS
from prody.utilities import openFile, makePath, openURL

__all__ = ['PDBLigandRecord', 'fetchPDBLigand', 'parsePDBLigand']


[docs]class PDBLigandRecord(object): """Class for handling the output of fetchPDBLigand""" def __init__(self, data): self._rawdata = data
[docs] def getCanonicalSMILES(self): return self._rawdata['CACTVS_SMILES_CANONICAL']
[docs]def fetchPDBLigand(cci, filename=None): """Fetch PDB ligand data from PDB_ for chemical component *cci*. *cci* may be 3-letter chemical component identifier or a valid XML filename. If *filename* is given, XML file will be saved with that name. If you query ligand data frequently, you may configure ProDy to save XML files in your computer. Set ``ligand_xml_save`` option **True**, i.e. ``confProDy(ligand_xml_save=True)``. Compressed XML files will be save to ProDy package folder, e.g. :file:`/home/user/.prody/pdbligands`. Each file is around 5Kb when compressed. This function is compatible with PDBx/PDBML v 4.0. Ligand data is returned in a dictionary. Ligand coordinate atom data with *model* and *ideal* coordinate sets are also stored in this dictionary. Note that this dictionary will contain data that is present in the XML file and all Ligand Expo XML files do not contain every possible data field. So, it may be better if you use :meth:`dict.get` instead of indexing the dictionary, e.g. to retrieve formula weight (or relative molar mass) of the chemical component use ``data.get('formula_weight')`` instead of ``data['formula_weight']`` to avoid exceptions when this data field is not found in the XML file. URL and/or path of the XML file are returned in the dictionary with keys ``url`` and ``path``, respectively. Following example downloads data for ligand STI (a.k.a. Gleevec and Imatinib) and calculates RMSD between model (X-ray structure 1IEP) and ideal (energy minimized) coordinate sets: .. ipython:: python from prody import * ligand_data = fetchPDBLigand('STI') ligand_data['model_coordinates_db_code'] ligand_model = ligand_data['model'] ligand_ideal = ligand_data['ideal'] transformation = superpose(ligand_ideal.noh, ligand_model.noh) calcRMSD(ligand_ideal.noh, ligand_model.noh)""" if not isinstance(cci, str): raise TypeError('cci must be a string') if isfile(cci): inp = openFile(cci) xml = inp.read() inp.close() url = None path = cci cci = splitext(splitext(split(cci)[1])[0])[0].upper() elif len(cci) > 4 or not cci.isalnum(): raise ValueError('cci must be 3-letters long and alphanumeric or ' 'a valid filename') else: xml = None cci = cci.upper() if SETTINGS.get('ligand_xml_save'): folder = join(getPackagePath(), 'pdbligands') if not isdir(folder): makePath(folder) xmlgz = path = join(folder, cci + '.xml.gz') if isfile(xmlgz): with openFile(xmlgz) as inp: xml = inp.read() else: folder = None path = None url = ('http://files.rcsb.org/ligands/download/{0}' '.xml'.format(cci.upper())) if not xml: try: inp = openURL(url) except IOError: raise IOError('XML file for ligand {0} is not found online' .format(cci)) else: xml = inp.read() if PY3K: xml = xml.decode() inp.close() if filename: out = openFile(filename, mode='w', folder=folder) out.write(xml) out.close() if SETTINGS.get('ligand_xml_save'): with openFile(xmlgz, 'w') as out: out.write(xml) import xml.etree.cElementTree as ET root = ET.XML(xml) if (root.get('{http://www.w3.org/2001/XMLSchema-instance}' 'schemaLocation') != 'http://pdbml.pdb.org/schema/pdbx-v40.xsd pdbx-v40.xsd'): LOGGER.warn('XML is not in PDBx/PDBML v 4.0 format, resulting ' 'dictionary may not contain all data fields') ns = root.tag[:root.tag.rfind('}')+1] len_ns = len(ns) dict_ = {'url': url, 'path': path} for child in list(root.find(ns + 'chem_compCategory')[0]): tag = child.tag[len_ns:] if tag.startswith('pdbx_'): tag = tag[5:] dict_[tag] = child.text dict_['formula_weight'] = float(dict_.get('formula_weight')) identifiers_and_descriptors = [] results = root.find(ns + 'pdbx_chem_comp_identifierCategory') if results: identifiers_and_descriptors.extend(results) results = root.find(ns + 'pdbx_chem_comp_descriptorCategory') if results: identifiers_and_descriptors.extend(results) for child in identifiers_and_descriptors: program = child.get('program').replace(' ', '_') type_ = child.get('type').replace(' ', '_') dict_[program + '_' + type_] = child[0].text dict_[program + '_version'] = child.get('program_version') dict_['audits'] = [(audit.get('action_type'), audit.get('date')) for audit in list(root.find(ns + 'pdbx_chem_comp_auditCategory'))] atoms = list(root.find(ns + 'chem_comp_atomCategory')) n_atoms = len(atoms) ideal_coords = np.zeros((n_atoms, 3)) model_coords = np.zeros((n_atoms, 3)) atomnames = np.zeros(n_atoms, dtype=ATOMIC_FIELDS['name'].dtype) elements = np.zeros(n_atoms, dtype=ATOMIC_FIELDS['element'].dtype) resnames = np.zeros(n_atoms, dtype=ATOMIC_FIELDS['resname'].dtype) charges = np.zeros(n_atoms, dtype=ATOMIC_FIELDS['charge'].dtype) resnums = np.ones(n_atoms, dtype=ATOMIC_FIELDS['charge'].dtype) alternate_atomnames = np.zeros(n_atoms, dtype=ATOMIC_FIELDS['name'].dtype) leaving_atom_flags = np.zeros(n_atoms, np.bool) aromatic_flags = np.zeros(n_atoms, np.bool) stereo_configs = np.zeros(n_atoms, np.bool) ordinals = np.zeros(n_atoms, int) name2index = {} for i, atom in enumerate(atoms): data = dict([(child.tag[len_ns:], child.text) for child in list(atom)]) name = data.get('pdbx_component_atom_id', 'X') name2index[name] = i atomnames[i] = name elements[i] = data.get('type_symbol', 'X') resnames[i] = data.get('pdbx_component_comp_id', 'UNK') charges[i] = float(data.get('charge', 0)) alternate_atomnames[i] = data.get('alt_atom_id', 'X') leaving_atom_flags[i] = data.get('pdbx_leaving_atom_flag') == 'Y' aromatic_flags[i] = data.get('pdbx_atomatic_flag') == 'Y' stereo_configs[i] = data.get('pdbx_stereo_config') == 'Y' ordinals[i] = int(data.get('pdbx_ordinal', 0)) model_coords[i, 0] = float(data.get('model_Cartn_x', 0)) model_coords[i, 1] = float(data.get('model_Cartn_y', 0)) model_coords[i, 2] = float(data.get('model_Cartn_z', 0)) ideal_coords[i, 0] = float(data.get('pdbx_model_Cartn_x_ideal', 0)) ideal_coords[i, 1] = float(data.get('pdbx_model_Cartn_y_ideal', 0)) ideal_coords[i, 2] = float(data.get('pdbx_model_Cartn_z_ideal', 0)) pdbid = dict_.get('model_coordinates_db_code') if pdbid: model = AtomGroup(cci + ' model ({0})'.format(pdbid)) else: model = AtomGroup(cci + ' model') model.setCoords(model_coords) model.setNames(atomnames) model.setResnames(resnames) model.setResnums(resnums) model.setElements(elements) model.setCharges(charges) model.setFlags('leaving_atom_flags', leaving_atom_flags) model.setFlags('aromatic_flags', aromatic_flags) model.setFlags('stereo_configs', stereo_configs) model.setData('ordinals', ordinals) model.setData('alternate_atomnames', alternate_atomnames) dict_['model'] = model ideal = model.copy() ideal.setTitle(cci + ' ideal') ideal.setCoords(ideal_coords) dict_['ideal'] = ideal bonds = [] warned = set() for bond in list(root.find(ns + 'chem_comp_bondCategory') or bonds): name_1 = bond.get('atom_id_1') name_2 = bond.get('atom_id_2') try: bonds.append((name2index[name_1], name2index[name_2])) except KeyError: if name_1 not in warned and name_1 not in name2index: warned.add(name_1) LOGGER.warn('{0} specified {1} in bond category is not ' 'a valid atom name.'.format(repr(name_1), cci)) if name_2 not in warned and name_2 not in name2index: warned.add(name_2) LOGGER.warn('{0} specified {1} in bond category is not ' 'a valid atom name.'.format(repr(name_2), cci)) if bonds: bonds = np.array(bonds, int) model.setBonds(bonds) ideal.setBonds(bonds) return dict_
[docs]def parsePDBLigand(cci, filename=None): """See :func:`.fetchPDBLigand`""" lig_dict = fetchPDBLigand(cci, filename) return PDBLigandRecord(lig_dict)