# -*- coding: utf-8 -*-
"""This module defines functions for fetching PDB ligand data."""
from os.path import isdir, isfile, join, split, splitext
import numpy as np
from prody import LOGGER, SETTINGS, getPackagePath, PY3K
from prody.atomic import AtomGroup, ATOMIC_FIELDS
from prody.utilities import openFile, makePath, openURL
__all__ = ['PDBLigandRecord', 'fetchPDBLigand', 'parsePDBLigand']
[docs]class PDBLigandRecord(object):
"""Class for handling the output of fetchPDBLigand"""
def __init__(self, data):
self._rawdata = data
[docs] def getCanonicalSMILES(self):
return self._rawdata['CACTVS_SMILES_CANONICAL']
[docs]def fetchPDBLigand(cci, filename=None):
"""Fetch PDB ligand data from PDB_ for chemical component *cci*.
*cci* may be 3-letter chemical component identifier or a valid XML
filename. If *filename* is given, XML file will be saved with that name.
If you query ligand data frequently, you may configure ProDy to save XML
files in your computer. Set ``ligand_xml_save`` option **True**, i.e.
``confProDy(ligand_xml_save=True)``. Compressed XML files will be save
to ProDy package folder, e.g. :file:`/home/user/.prody/pdbligands`. Each
file is around 5Kb when compressed.
This function is compatible with PDBx/PDBML v 4.0.
Ligand data is returned in a dictionary. Ligand coordinate atom data with
*model* and *ideal* coordinate sets are also stored in this dictionary.
Note that this dictionary will contain data that is present in the XML
file and all Ligand Expo XML files do not contain every possible data
field. So, it may be better if you use :meth:`dict.get` instead of
indexing the dictionary, e.g. to retrieve formula weight (or relative
molar mass) of the chemical component use ``data.get('formula_weight')``
instead of ``data['formula_weight']`` to avoid exceptions when this data
field is not found in the XML file. URL and/or path of the XML file are
returned in the dictionary with keys ``url`` and ``path``, respectively.
Following example downloads data for ligand STI (a.k.a. Gleevec and
Imatinib) and calculates RMSD between model (X-ray structure 1IEP) and
ideal (energy minimized) coordinate sets:
.. ipython:: python
from prody import *
ligand_data = fetchPDBLigand('STI')
ligand_data['model_coordinates_db_code']
ligand_model = ligand_data['model']
ligand_ideal = ligand_data['ideal']
transformation = superpose(ligand_ideal.noh, ligand_model.noh)
calcRMSD(ligand_ideal.noh, ligand_model.noh)"""
if not isinstance(cci, str):
raise TypeError('cci must be a string')
if isfile(cci):
inp = openFile(cci)
xml = inp.read()
inp.close()
url = None
path = cci
cci = splitext(splitext(split(cci)[1])[0])[0].upper()
elif len(cci) > 4 or not cci.isalnum():
raise ValueError('cci must be 3-letters long and alphanumeric or '
'a valid filename')
else:
xml = None
cci = cci.upper()
if SETTINGS.get('ligand_xml_save'):
folder = join(getPackagePath(), 'pdbligands')
if not isdir(folder):
makePath(folder)
xmlgz = path = join(folder, cci + '.xml.gz')
if isfile(xmlgz):
with openFile(xmlgz) as inp:
xml = inp.read()
else:
folder = None
path = None
url = ('http://files.rcsb.org/ligands/download/{0}'
'.xml'.format(cci.upper()))
if not xml:
try:
inp = openURL(url)
except IOError:
raise IOError('XML file for ligand {0} is not found online'
.format(cci))
else:
xml = inp.read()
if PY3K:
xml = xml.decode()
inp.close()
if filename:
out = openFile(filename, mode='w', folder=folder)
out.write(xml)
out.close()
if SETTINGS.get('ligand_xml_save'):
with openFile(xmlgz, 'w') as out:
out.write(xml)
import xml.etree.cElementTree as ET
root = ET.XML(xml)
if (root.get('{http://www.w3.org/2001/XMLSchema-instance}'
'schemaLocation') !=
'http://pdbml.pdb.org/schema/pdbx-v40.xsd pdbx-v40.xsd'):
LOGGER.warn('XML is not in PDBx/PDBML v 4.0 format, resulting '
'dictionary may not contain all data fields')
ns = root.tag[:root.tag.rfind('}')+1]
len_ns = len(ns)
dict_ = {'url': url, 'path': path}
for child in list(root.find(ns + 'chem_compCategory')[0]):
tag = child.tag[len_ns:]
if tag.startswith('pdbx_'):
tag = tag[5:]
dict_[tag] = child.text
dict_['formula_weight'] = float(dict_.get('formula_weight'))
identifiers_and_descriptors = []
results = root.find(ns + 'pdbx_chem_comp_identifierCategory')
if results:
identifiers_and_descriptors.extend(results)
results = root.find(ns + 'pdbx_chem_comp_descriptorCategory')
if results:
identifiers_and_descriptors.extend(results)
for child in identifiers_and_descriptors:
program = child.get('program').replace(' ', '_')
type_ = child.get('type').replace(' ', '_')
dict_[program + '_' + type_] = child[0].text
dict_[program + '_version'] = child.get('program_version')
dict_['audits'] = [(audit.get('action_type'), audit.get('date'))
for audit in
list(root.find(ns + 'pdbx_chem_comp_auditCategory'))]
atoms = list(root.find(ns + 'chem_comp_atomCategory'))
n_atoms = len(atoms)
ideal_coords = np.zeros((n_atoms, 3))
model_coords = np.zeros((n_atoms, 3))
atomnames = np.zeros(n_atoms, dtype=ATOMIC_FIELDS['name'].dtype)
elements = np.zeros(n_atoms, dtype=ATOMIC_FIELDS['element'].dtype)
resnames = np.zeros(n_atoms, dtype=ATOMIC_FIELDS['resname'].dtype)
charges = np.zeros(n_atoms, dtype=ATOMIC_FIELDS['charge'].dtype)
resnums = np.ones(n_atoms, dtype=ATOMIC_FIELDS['charge'].dtype)
alternate_atomnames = np.zeros(n_atoms, dtype=ATOMIC_FIELDS['name'].dtype)
leaving_atom_flags = np.zeros(n_atoms, np.bool)
aromatic_flags = np.zeros(n_atoms, np.bool)
stereo_configs = np.zeros(n_atoms, np.bool)
ordinals = np.zeros(n_atoms, int)
name2index = {}
for i, atom in enumerate(atoms):
data = dict([(child.tag[len_ns:], child.text) for child in list(atom)])
name = data.get('pdbx_component_atom_id', 'X')
name2index[name] = i
atomnames[i] = name
elements[i] = data.get('type_symbol', 'X')
resnames[i] = data.get('pdbx_component_comp_id', 'UNK')
charges[i] = float(data.get('charge', 0))
alternate_atomnames[i] = data.get('alt_atom_id', 'X')
leaving_atom_flags[i] = data.get('pdbx_leaving_atom_flag') == 'Y'
aromatic_flags[i] = data.get('pdbx_atomatic_flag') == 'Y'
stereo_configs[i] = data.get('pdbx_stereo_config') == 'Y'
ordinals[i] = int(data.get('pdbx_ordinal', 0))
model_coords[i, 0] = float(data.get('model_Cartn_x', 0))
model_coords[i, 1] = float(data.get('model_Cartn_y', 0))
model_coords[i, 2] = float(data.get('model_Cartn_z', 0))
ideal_coords[i, 0] = float(data.get('pdbx_model_Cartn_x_ideal', 0))
ideal_coords[i, 1] = float(data.get('pdbx_model_Cartn_y_ideal', 0))
ideal_coords[i, 2] = float(data.get('pdbx_model_Cartn_z_ideal', 0))
pdbid = dict_.get('model_coordinates_db_code')
if pdbid:
model = AtomGroup(cci + ' model ({0})'.format(pdbid))
else:
model = AtomGroup(cci + ' model')
model.setCoords(model_coords)
model.setNames(atomnames)
model.setResnames(resnames)
model.setResnums(resnums)
model.setElements(elements)
model.setCharges(charges)
model.setFlags('leaving_atom_flags', leaving_atom_flags)
model.setFlags('aromatic_flags', aromatic_flags)
model.setFlags('stereo_configs', stereo_configs)
model.setData('ordinals', ordinals)
model.setData('alternate_atomnames', alternate_atomnames)
dict_['model'] = model
ideal = model.copy()
ideal.setTitle(cci + ' ideal')
ideal.setCoords(ideal_coords)
dict_['ideal'] = ideal
bonds = []
warned = set()
for bond in list(root.find(ns + 'chem_comp_bondCategory') or bonds):
name_1 = bond.get('atom_id_1')
name_2 = bond.get('atom_id_2')
try:
bonds.append((name2index[name_1], name2index[name_2]))
except KeyError:
if name_1 not in warned and name_1 not in name2index:
warned.add(name_1)
LOGGER.warn('{0} specified {1} in bond category is not '
'a valid atom name.'.format(repr(name_1), cci))
if name_2 not in warned and name_2 not in name2index:
warned.add(name_2)
LOGGER.warn('{0} specified {1} in bond category is not '
'a valid atom name.'.format(repr(name_2), cci))
if bonds:
bonds = np.array(bonds, int)
model.setBonds(bonds)
ideal.setBonds(bonds)
return dict_
[docs]def parsePDBLigand(cci, filename=None):
"""See :func:`.fetchPDBLigand`"""
lig_dict = fetchPDBLigand(cci, filename)
return PDBLigandRecord(lig_dict)