# -*- coding: utf-8 -*-
"""This module defines functions for editing normal mode data."""
import numpy as np
from prody.atomic import Atomic, AtomGroup, AtomMap, AtomSubset
from prody.atomic import Selection, SELECT, sliceAtoms, extendAtoms
from prody.utilities import importLA, isListLike
from prody import _PY3K
from .nma import NMA
from .mode import VectorBase, Mode, Vector
from .gnm import GNM
from .anm import ANM
from .pca import PCA
if not _PY3K:
range = xrange
__all__ = ['extendModel', 'extendMode', 'extendVector',
'sliceMode', 'sliceModel', 'sliceModelByMask', 'sliceVector',
'reduceModel', 'reduceModelByMask', 'trimModel', 'trimModelByMask']
[docs]def extendModel(model, nodes, atoms, norm=False):
"""Extend a coarse grained *model* built for *nodes* to *atoms*. *model*
may be :class:`.ANM`, :class:`.GNM`, :class:`.PCA`, or :class:`.NMA`
instance. This function will take part of the normal modes for each node
(i.e. Cα atoms) and extend it to all other atoms in the same residue. For
each atom in *nodes* argument *atoms* argument must contain a corresponding
residue. If *norm* is **True**, extended modes are normalized."""
try:
evecs = model._getArray()
evals = model.getEigvals()
except AttributeError:
raise ValueError('model must be an NMA instance')
if model.numAtoms() != nodes.numAtoms():
raise ValueError('atom numbers must be the same')
indices, atommap = extendAtoms(nodes, atoms, model.is3d())
evecs = evecs[indices, :]
if norm:
evecs /= np.array([((evecs[:, i]) ** 2).sum() ** 0.5
for i in range(evecs.shape[1])])
if model.is3d():
extended = NMA('Extended ' + str(model))
else:
extended = GNM('Extended ' + str(model))
extended.setEigens(evecs, evals)
return extended, atommap
[docs]def extendMode(mode, nodes, atoms, norm=False):
"""Extend a coarse grained normal *mode* built for *nodes* to *atoms*.
This function will take part of the normal modes for each node (i.e. Cα
atoms) and extend it to all other atoms in the same residue. For each atom
in *nodes* argument *atoms* argument must contain a corresponding residue.
Extended mode is multiplied by the square root of variance of the mode.
If *norm* is **True**, extended mode is normalized."""
try:
vec = mode._getArray()
std = mode.getVariance() ** 0.5
except AttributeError:
raise ValueError('mode must be a normal Mode instance')
indices, atommap = extendAtoms(nodes, atoms, mode.is3d())
vec = vec[indices]
if norm:
vec /= ((vec) ** 2).sum() ** 0.5
else:
vec *= std
extended = Vector(vec, 'Extended ' + str(mode), mode.is3d())
return extended, atommap
[docs]def extendVector(vector, nodes, atoms):
"""Extend a coarse grained *vector* for *nodes* to *atoms*. This function
will take part of the normal modes for each node (i.e. Cα atoms) and extend
it to all other atoms in the same residue. For each atom in *nodes*,
*atoms* argument must contain a corresponding residue."""
try:
vec = vector._getArray()
except AttributeError:
raise ValueError('vector must be a Vector instance')
if vector.numAtoms() != nodes.numAtoms():
raise ValueError('atom numbers must be the same')
indices, atommap = extendAtoms(nodes, atoms, vector.is3d())
extended = Vector(vec[indices], 'Extended ' + str(vector), vector.is3d())
return extended, atommap
[docs]def sliceVector(vector, atoms, select):
"""Returns part of the *vector* for *atoms* matching *select*. Note that
returned :class:`.Vector` instance is not normalized.
:arg vector: vector instance to be sliced
:type vector: :class:`.VectorBase`
:arg atoms: atoms for which *vector* describes a deformation, motion, etc.
:type atoms: :class:`.Atomic`
:arg select: an atom selection or a selection string
:type select: :class:`.Selection`, str
:returns: (:class:`.Vector`, :class:`.Selection`)"""
if not isinstance(vector, VectorBase):
raise TypeError('vector must be a VectorBase instance, not {0}'
.format(type(vector)))
if not isinstance(atoms, Atomic):
raise TypeError('atoms must be an Atomic instance, not {0}'
.format(type(atoms)))
if atoms.numAtoms() != vector.numAtoms():
raise ValueError('number of atoms in model and atoms must be equal')
which, sel = sliceAtoms(atoms, select)
vec = Vector(vector.getArrayNx3()[
which, :].flatten(),
'{0} slice {1}'.format(str(vector), select),
vector.is3d())
return (vec, sel)
[docs]def trimModel(model, atoms, select):
"""Returns a part of the *model* for *atoms* matching *select*. This method removes
columns and rows in the connectivity matrix and fix the diagonal sums. Normal modes
need to be calculated again after the trim.
:arg mode: NMA model instance to be sliced
:type mode: :class:`.NMA`
:arg atoms: atoms for which the *model* was built
:type atoms: :class:`.Atomic`
:arg select: an atom selection or a selection string
:type select: :class:`.Selection`, str
:returns: (:class:`.NMA`, :class:`.Selection`)"""
if not isinstance(model, NMA):
raise TypeError('mode must be a NMA instance, not {0}'
.format(type(model)))
if not isinstance(atoms, Atomic):
raise TypeError('atoms must be an Atomic instance, not {0}'
.format(type(atoms)))
if atoms.numAtoms() != model.numAtoms():
raise ValueError('number of atoms in model and atoms must be equal')
which, sel = sliceAtoms(atoms, select)
nma = trimModelByMask(model, which)
return (nma, sel)
[docs]def trimModelByMask(model, mask):
"""Returns a part of the *model* indicated by *mask*. This method removes
columns and rows in the connectivity matrix indicated by *mask* and fix the diagonal sums.
Normal modes need to be calculated again after the trim.
:arg mode: NMA model instance to be sliced
:type mode: :class:`.NMA`
:arg mask: an Integer array or a Boolean array where ``"True"`` indicates
the parts being selected
:type mask: list, :class:`~numpy.ndarray`
:returns: :class:`.NMA`"""
if not isListLike(mask):
raise TypeError('mask must be either a list or a numpy.ndarray, not {0}'
.format(type(model)))
is_bool = mask.dtype is np.dtype('bool')
if is_bool:
if len(mask) != model.numAtoms():
raise ValueError('number of atoms in model and mask must be equal')
which = mask
else:
if mask.min() < 0 or mask.max() >= model.numAtoms():
raise ValueError('index in mask exceeds range')
which = np.zeros(model.numAtoms(), dtype=bool)
which[mask] = True
if model.is3d():
which = np.repeat(which, 3)
if isinstance(model, GNM):
matrix = model._kirchhoff
elif isinstance(model, ANM):
matrix = model._hessian
elif isinstance(model, PCA):
matrix = model._cov
if isinstance(model, PCA):
ss = matrix[which, :][:, which]
eda = PCA(model.getTitle() + ' reduced')
eda.setCovariance(ss)
return eda
else:
matrix = matrix[which, :][:, which]
if isinstance(model, GNM):
gnm = GNM(model.getTitle() + ' reduced')
I = np.eye(len(matrix), dtype=bool)
matrix[I] = - (matrix.sum(axis=0) - np.diag(matrix))
gnm.setKirchhoff(matrix)
return gnm
elif isinstance(model, ANM):
model_type = type(model)
anm = model_type(model.getTitle() + ' reduced')
n = len(matrix) // 3
for i in range(n):
S = np.zeros((3, 3))
for j in range(n):
if i == j:
continue
S -= matrix[i*3:i*3+3, j*3:j*3+3]
matrix[i*3:i*3+3, i*3:i*3+3] = S
anm.setHessian(matrix)
if hasattr(anm, 'getMembrane'):
anm._membrane = model.getMembrane()
anm._combined = model.getCombined()
return anm
[docs]def sliceMode(mode, atoms, select):
"""Returns part of the *mode* for *atoms* matching *select*. This works
slightly different from :func:`.sliceVector`. Mode array (eigenvector) is
multiplied by square-root of the variance along the mode. If mode is from
an elastic network model, variance is defined as the inverse of the
eigenvalue. Note that returned :class:`.Vector` instance is not
normalized.
:arg mode: mode instance to be sliced
:type mode: :class:`.Mode`
:arg atoms: atoms for which *mode* describes a deformation, motion, etc.
:type atoms: :class:`.Atomic`
:arg select: an atom selection or a selection string
:type select: :class:`.Selection`, str
:returns: (:class:`.Vector`, :class:`.Selection`)"""
if not isinstance(mode, Mode):
raise TypeError('mode must be a Mode instance, not {0}'
.format(type(mode)))
if not isinstance(atoms, Atomic):
raise TypeError('atoms must be an Atomic instance, not {0}'
.format(type(atoms)))
if atoms.numAtoms() != mode.numAtoms():
raise ValueError('number of atoms in model and atoms must be equal')
which, sel = sliceAtoms(atoms, select)
vec = Vector(mode.getArrayNx3()[which, :].flatten() *
mode.getVariance()**0.5,
'{0} slice {1}'.format(str(mode), select), mode.is3d())
return (vec, sel)
[docs]def sliceModel(model, atoms, select):
"""Returns a part of the *model* (modes calculated) for *atoms* matching *select*.
Note that normal modes are sliced instead the connectivity matrix. Sliced normal
modes (eigenvectors) are not normalized.
:arg mode: NMA model instance to be sliced
:type mode: :class:`.NMA`
:arg atoms: atoms for which the *model* was built
:type atoms: :class:`.Atomic`
:arg select: an atom selection or a selection string
:type select: :class:`.Selection`, str
:returns: (:class:`.NMA`, :class:`.Selection`)"""
if not isinstance(model, NMA):
raise TypeError('mode must be a NMA instance, not {0}'
.format(type(model)))
if not isinstance(atoms, Atomic):
raise TypeError('atoms must be an Atomic instance, not {0}'
.format(type(atoms)))
if atoms.numAtoms() != model.numAtoms():
raise ValueError('number of atoms in model and atoms must be equal')
which, sel = sliceAtoms(atoms, select)
nma = sliceModelByMask(model, which)
return (nma, sel)
[docs]def sliceModelByMask(model, mask):
"""Returns a part of the *model* indicated by *mask*. Note that
normal modes (eigenvectors) are not normalized.
:arg mode: NMA model instance to be sliced
:type mode: :class:`.NMA`
:arg mask: an Integer array or a Boolean array where ``"True"`` indicates
the parts being selected
:type mask: list, :class:`~numpy.ndarray`
:returns: :class:`.NMA`"""
if not isListLike(mask):
raise TypeError('mask must be either a list or a numpy.ndarray, not {0}'
.format(type(model)))
is_bool = mask.dtype is np.dtype('bool')
if is_bool:
if len(mask) != model.numAtoms():
raise ValueError('number of atoms in model and mask must be equal')
which = mask
else:
if mask.min() < 0 or mask.max() >= model.numAtoms():
raise ValueError('index in mask exceeds range')
which = np.zeros(model.numAtoms(), dtype=bool)
which[mask] = True
array = model._getArray()
nma = type(model)('{0} sliced'
.format(model.getTitle()))
if model.is3d():
which = np.repeat(which, 3)
nma.setEigens(array[which, :], model.getEigvals())
return nma
[docs]def reduceModel(model, atoms, select):
"""Returns reduced NMA model. Reduces a :class:`.NMA` model to a subset of
*atoms* matching *select*. This function behaves differently depending on
the type of the *model* argument. For :class:`.ANM` and :class:`.GNM` or
other :class:`.NMA` models, force constant matrix for system of interest
(specified by the *select*) is derived from the force constant matrix for
the *model* by assuming that for any given displacement of the system of
interest, other atoms move along in such a way as to minimize the potential
energy. This is based on the formulation in [KH00]_. For :class:`.PCA`
models, this function simply takes the sub-covariance matrix for selection.
.. [KH00] Hinsen K, Petrescu A-J, Dellerue S, Bellissent-Funel M-C, Kneller GR.
Harmonicity in slow protein dynamics. *Chem Phys* **2000** 261:25-37.
:arg model: dynamics model
:type model: :class:`.ANM`, :class:`.GNM`, or :class:`.PCA`
:arg atoms: atoms that were used to build the model
:type atoms: :class:`.Atomic`
:arg select: an atom selection or a selection string
:type select: :class:`.Selection`, str
:returns: (:class:`.NMA`, :class:`.Selection`)"""
if not isinstance(model, NMA):
raise TypeError('model must be an NMA instance, not {0}'
.format(type(model)))
if not isinstance(atoms, (AtomGroup, AtomSubset, AtomMap)):
raise TypeError('atoms type is not valid')
if len(atoms) <= 1:
raise TypeError('atoms must contain more than 1 atoms')
if isinstance(model, GNM):
matrix = model._kirchhoff
elif isinstance(model, ANM):
matrix = model._hessian
elif isinstance(model, PCA):
matrix = model._cov
else:
raise TypeError('model does not have a valid type derived from NMA')
if matrix is None:
raise ValueError('model matrix (Hessian/Kirchhoff/Covariance) is not '
'built')
which, select = sliceAtoms(atoms, select)
nma = reduceModelByMask(model, which)
return nma, select
[docs]def reduceModelByMask(model, mask):
"""Returns NMA model reduced based on *mask*.
:arg model: dynamics model
:type model: :class:`.ANM`, :class:`.GNM`, or :class:`.PCA`
:arg mask: an Integer array or a Boolean array where ``"True"`` indicates
the parts being selected
:type mask: list, :class:`~numpy.ndarray`
:returns: :class:`.NMA`"""
if not isinstance(model, NMA):
raise TypeError('model must be an NMA instance, not {0}'
.format(type(model)))
if not isListLike(mask):
raise TypeError('mask must be either a list or a numpy.ndarray, not {0}'
.format(type(model)))
is_bool = mask.dtype is np.dtype('bool')
if is_bool:
if len(mask) != model.numAtoms():
raise ValueError('number of atoms in model and mask must be equal')
system = mask
else:
if mask.min() < 0 or mask.max() >= model.numAtoms():
raise ValueError('index in mask exceeds range')
system = np.zeros(model.numAtoms(), dtype=bool)
system[mask] = True
if isinstance(model, GNM):
matrix = model._kirchhoff
elif isinstance(model, ANM):
matrix = model._hessian
elif isinstance(model, PCA):
matrix = model._cov
else:
raise TypeError('model does not have a valid type derived from NMA')
if matrix is None:
raise ValueError('model matrix (Hessian/Kirchhoff/Covariance) is not '
'built')
if model.is3d():
system = np.repeat(system, 3)
if isinstance(model, PCA):
ss = matrix[system, :][:, system]
eda = PCA(model.getTitle() + ' reduced')
eda.setCovariance(ss)
return eda
else:
matrix = _reduceModel(matrix, system)
if isinstance(model, GNM):
gnm = GNM(model.getTitle() + ' reduced')
gnm.setKirchhoff(matrix)
return gnm
elif isinstance(model, ANM):
anm = ANM(model.getTitle() + ' reduced')
anm.setHessian(matrix)
return anm
def _reduceModel(matrix, system):
"""This is the underlying function that reduces models, which shall
remain private. *system* is a Boolean array where **True** indicates
system nodes."""
linalg = importLA()
other = np.invert(system)
ss = matrix[system, :][:, system]
so = matrix[system, :][:, other]
os = matrix[other, :][:, system]
oo = matrix[other, :][:, other]
if other.any():
try:
invoo = linalg.inv(oo)
except:
invoo = linalg.pinv(oo)
matrix = ss - np.dot(so, np.dot(invoo, os))
else:
matrix = ss
return matrix