# -*- coding: utf-8 -*-
"""This module defines a class for handling ensembles of conformations."""
from numbers import Integral
from numpy import dot, add, subtract, array, ndarray, sign, concatenate
from numpy import zeros, ones, arange, isscalar, max, asarray
from numpy import newaxis, unique, repeat, sum, empty, tile
from prody import LOGGER
from prody.atomic import Atomic, sliceAtoms
from prody.atomic.atomgroup import checkLabel
from prody.measure import getRMSD, calcDeformVector
from prody.utilities import importLA, checkCoords, checkWeights, copy, isListLike
from .conformation import *
__all__ = ['Ensemble']
[docs]class Ensemble(object):
"""A class for analysis of arbitrary conformational ensembles.
Indexing (e.g. ``ens[0]``) returns a :class:`.Conformation` instance that
points to a coordinate set in the ensemble. Slicing (e.g. ``ens[0:10]``)
returns an :class:`Ensemble` instance that contains a copy of the subset
of conformations (coordinate sets). """
def __init__(self, title='Unknown'):
"""Instantiate with a *title* or a :class:`.Atomic` instance. All
coordinate sets from atomic instances will be added to the ensemble."""
self._title = str(title).strip()
self._coords = None # reference
self._n_atoms = 0
self._n_csets = 0 # number of conformations/frames/coordinate sets
self._weights = None
self._atoms = None
self._indices = None # indices of selected atoms
self._confs = None # coordinate sets
self._data = dict()
if isinstance(title, Ensemble):
self._atoms = title.getAtoms()
elif isinstance(title, Atomic):
self._atoms = title
if isinstance(title, (Atomic, Ensemble)):
self.setCoords(title)
self.addCoordset(title)
def __repr__(self):
if self._indices is None:
return ('<{0}: {1} ({2} conformations; {3} atoms)>'
).format(self.__class__.__name__, self.getTitle(), len(self), self._n_atoms)
else:
return ('<{0}: {1} ({2} conformations; selected {3} of '
'{4} atoms)>').format(self.__class__.__name__, self.getTitle(), len(self),
self.numSelected(), self._n_atoms)
def __str__(self):
return 'Ensemble {0}'.format(self.getTitle())
def __len__(self):
return self._n_csets
def __getitem__(self, index):
"""Returns a conformation at given index."""
if self._confs is None:
return None
# use sth like follows
# which = arange(self._n_csets)[index].nonzero()[0]
# if len(which) == 1:
# return getConf...
# else:
# return SubEnsemble
if isinstance(index, Integral):
return self.getConformation(index)
elif isinstance(index, slice):
ens = type(self)('{0} ({1[0]}:{1[1]}:{1[2]})'.format(
self.getTitle(), index.indices(len(self))))
if self._coords is not None:
ens.setCoords(self._coords.copy())
ens.addCoordset(self._confs[index].copy())
for key in self._data:
ens._data[key] = self._data[key][index].copy()
if self._weights is not None:
ens.setWeights(self._weights.copy())
ens.setAtoms(self._atoms)
ens._indices = self._indices
return ens
elif isinstance(index, (list, ndarray)):
ens = type(self)('{0}'.format(self.getTitle()))
if self._coords is not None:
ens.setCoords(self._coords.copy())
ens.addCoordset(self._confs[index].copy())
for key in self._data:
ens._data[key] = self._data[key][index].copy()
if self._weights is not None:
ens.setWeights(self._weights.copy())
ens.setAtoms(self._atoms)
ens._indices = self._indices
return ens
else:
raise IndexError('invalid index')
def __add__(self, other):
"""Concatenate ensembles. The reference coordinates, atoms,
and weights of *self* is used in the resulting ensemble."""
if not isinstance(other, Ensemble):
raise TypeError('an Ensemble instance cannot be added to an {0} '
'instance'.format(type(other)))
elif self._n_atoms != other._n_atoms:
raise ValueError('Ensembles must have same number of atoms.')
ensemble = type(self)('{0} + {1}'.format(self.getTitle(),
other.getTitle()))
if self._coords is not None:
ensemble.setCoords(self._coords.copy())
if self._confs is not None:
ensemble.addCoordset(self._confs.copy())
if other._confs is not None:
ensemble.addCoordset(other._confs.copy())
all_keys = set(list(self._data.keys()) + list(other._data.keys()))
for key in all_keys:
if key in self._data and key in other._data:
self_data = self._data[key]
other_data = other._data[key]
elif key in self._data:
self_data = self._data[key]
other_data = zeros(other.numConfs(), dtype=self_data.dtype)
elif key in other._data:
other_data = other._data[key]
self_data = zeros(other.numConfs(), dtype=other_data.dtype)
ensemble._data[key] = concatenate((self_data, other_data), axis=0)
if self._weights is not None:
LOGGER.info('Atom weights from {0} are used in {1}.'
.format(repr(self._title), repr(ensemble.getTitle())))
ensemble.setWeights(self._weights.copy())
elif other._weights is not None:
ensemble.setWeights(other._weights.copy())
if self._atoms is not None:
ensemble.setAtoms(self._atoms)
ensemble._indices = self._indices
else:
ensemble.setAtoms(other._atoms)
ensemble._indices = other._indices
return ensemble
def __iter__(self):
n_csets = self._n_csets
for i in range(n_csets):
if n_csets != self._n_csets:
raise RuntimeError('number of conformations in the ensemble '
'changed during iteration')
yield Conformation(self, i)
[docs] def getTitle(self):
"""Returns title of the ensemble."""
return self._title
[docs] def setTitle(self, title):
"""Set title of the ensemble."""
self._title = str(title)
[docs] def numAtoms(self, selected=True):
"""Returns number of atoms."""
if selected:
return self.numSelected()
return self._n_atoms
[docs] def numConfs(self):
"""Returns number of conformations."""
return self._n_csets
numCoordsets = numConfs
[docs] def numSelected(self):
"""Returns number of selected atoms. Number of all atoms will be
returned if a selection is not made. A subset of atoms can be
selected by passing a selection to :meth:`setAtoms`."""
return self._n_atoms if self._indices is None else len(self._indices)
[docs] def isSelected(self):
"""Returns if a subset of atoms are selected."""
return self._indices is not None
[docs] def getAtoms(self, selected=True):
"""Returns associated/selected atoms."""
if self._atoms is None:
return None
if self._indices is None or not selected:
return self._atoms
return self._atoms[self._indices]
[docs] def setAtoms(self, atoms):
"""Set *atoms* or specify a selection of atoms to be considered in
calculations and coordinate requests. When a selection is set,
corresponding subset of coordinates will be considered in, for
example, alignments and RMSD calculations. Setting atoms also
allows some functions to access atomic data when needed. For
example, :class:`.Ensemble` and :class:`.Conformation` instances
become suitable arguments for :func:`.writePDB`. Passing **None**
as *atoms* argument will deselect atoms."""
if atoms is None:
self._atoms = self._indices = None
return
try:
atoms.getACSIndex()
except AttributeError:
raise TypeError('atoms must be an Atomic instance')
n_atoms = self._n_atoms
if n_atoms:
if atoms.numAtoms() > n_atoms:
raise ValueError('atoms must be same size or smaller than '
'the ensemble')
try:
dummies = atoms.numDummies()
except AttributeError:
pass
else:
if not dummies:
indices = atoms._getIndices()
if any(indices != unique(indices)):
raise ValueError('atoms must be ordered by indices')
if atoms.numAtoms() == n_atoms: # atoms is a complete set (AtomSubset can be a complete set)
self._atoms = atoms
self._indices = None
else: # atoms is a subset
if not self._atoms:
try:
ag = atoms.getAtomGroup()
except AttributeError:
ag = atoms
if ag.numAtoms() != n_atoms:
raise ValueError('size mismatch between this ensemble ({0} atoms) and atoms ({1} atoms)'
.format(n_atoms, ag.numAtoms()))
self._atoms = ag
self._indices, _ = sliceAtoms(self._atoms, atoms)
else: # if assigning atoms to a new ensemble
self._n_atoms = atoms.numAtoms()
self._atoms = atoms
self._indices = None
[docs] def select(self, selection):
"""Selects columns corresponding to a part of the atoms."""
atoms = self.getAtoms()
if atoms is None:
raise ValueError('to use select, atoms must be set for the ensemble')
sel = atoms.select(selection)
self.setAtoms(sel)
[docs] def deselect(self):
"""Undoes the selection."""
self._indices = None
[docs] def getCoords(self, selected=True):
"""Returns a copy of reference coordinates for selected atoms."""
if self._coords is None:
return None
if self._indices is None or not selected:
return self._coords.copy()
return self._coords[self._indices].copy()
[docs] def getIndices(self):
"""Returns a copy of indices of selected columns"""
return copy(self._indices)
def setIndices(self, value):
if not isListLike(value):
raise TypeError('value must be a list or numpy.ndarray instance')
array = asarray(value)
if len(array) != self._n_atoms:
raise ValueError('length mismatch between this ensemble '
'(%d) and indices (%d)'%(self._n_atoms, len(array)))
self._indices = value
def _getCoords(self, selected=True):
"""Returns a view of reference coordinates for selected atoms."""
if self._coords is None:
return None
if self._indices is None or not selected:
return self._coords
return self._coords[self._indices].copy()
[docs] def setCoords(self, coords):
"""Set *coords* as the ensemble reference coordinate set. *coords*
may be an array with suitable data type, shape, and dimensionality, or
an object with :meth:`getCoords` method."""
atoms = coords
try:
if isinstance(coords, Ensemble):
coords = copy(coords._coords)
else:
coords = coords.getCoords()
except AttributeError:
pass
finally:
if coords is None:
raise ValueError('coordinates of {0} are not set'
.format(str(atoms)))
try:
checkCoords(coords, natoms=self._n_atoms)
except TypeError:
raise TypeError('coords must be a numpy array or an object '
'with `getCoords` method')
self._coords = coords
self._n_atoms = coords.shape[0]
if isinstance(atoms, Ensemble):
self._indices = atoms._indices
self._atoms = atoms._atoms
[docs] def getWeights(self, selected=True):
"""Returns a copy of weights of selected atoms."""
if self._weights is None:
return None
if self._indices is None or not selected:
return self._weights.copy()
if self._weights.ndim == 2:
return self._weights[self._indices].copy()
else:
return self._weights[:, self._indices].copy()
def _getWeights(self, selected=True):
if self._weights is None:
return None
if self._indices is None or not selected:
return self._weights
if self._weights.ndim == 2:
return self._weights[self._indices]
else:
return self._weights[:, self._indices]
[docs] def setWeights(self, weights):
"""Set atomic weights."""
if weights is None:
self._weights = None
else:
if self._n_atoms == 0:
raise AttributeError('first set reference coordinates')
try:
self._weights = checkWeights(weights, self._n_atoms, None)
except ValueError:
weights = checkWeights(weights, self.numSelected(), None)
if not self._weights:
self._weights = ones((self._n_atoms, 1), dtype=float)
self._weights[self._indices, :] = weights
[docs] def addCoordset(self, coords, **kwargs):
"""Add coordinate set(s) to the ensemble.
:arg coords: must be a :class:`~numpy.ndarray` with suitable data type,
shape and dimensionality, or an object with :meth:`getCoordsets` method.
:kwarg data: associated data to be added along with *coords*.
:type data: dict
"""
n_atoms = self._n_atoms
n_select = self.numSelected()
adddata = kwargs.pop('data', {})
try:
if self._coords is not None:
if isinstance(coords, Ensemble):
coords = coords._getCoordsets(selected=False)
elif hasattr(coords, '_getCoordsets'):
coords = coords._getCoordsets()
elif hasattr(coords, '_getCoords'):
coords = coords._getCoords()
coords = array(coords)
else:
if isinstance(coords, Ensemble):
coords = coords.getCoordsets(selected=False)
elif hasattr(coords, 'getCoordsets'):
coords = coords.getCoordsets()
elif hasattr(coords, 'getCoords'):
coords = coords.getCoords()
coords = array(coords)
except AttributeError:
pass
else:
if coords is None:
raise ValueError('coordinates are not set')
try:
checkCoords(coords, csets=True, natoms=n_atoms)
except:
try:
checkCoords(coords, csets=True, natoms=n_select)
except TypeError:
raise TypeError('coords must be a numpy array or an object '
'with `getCoords` method')
# update coordinates
if coords.ndim == 2:
n_nodes, _ = coords.shape
coords = coords.reshape((1, n_nodes, 3))
n_confs = 1
else:
n_confs, n_nodes, _ = coords.shape
if not n_atoms:
self._n_atoms = n_atoms = n_nodes
if n_nodes == n_select and self.isSelected():
full_coords = repeat(self._coords[newaxis, :, :], n_confs, axis=0)
full_coords[:, self._indices, :] = coords
coords = full_coords
if self._confs is None:
self._confs = coords
else:
self._confs = concatenate((self._confs, coords), axis=0)
# appending new data
if self._data is None:
self._data = {}
all_keys = set(list(self._data.keys()) + list(adddata.keys()))
for key in all_keys:
if key in self._data:
data = self._data[key]
if key not in adddata:
shape = [n_confs]
for s in data.shape[1:]:
shape.append(s)
newdata = zeros(shape, dtype=data.dtype)
else:
newdata = asarray(adddata[key])
if newdata.shape[0] != n_confs:
raise ValueError('the length of data["%s"] does not match that of coords'%key)
else:
newdata = asarray(adddata[key])
shape = [self._n_csets]
for s in newdata.shape[1:]:
shape.append(s)
data = zeros(shape, dtype=newdata.dtype)
self._data[key] = concatenate((data, newdata), axis=0)
# update the number of coordinate sets
self._n_csets += n_confs
[docs] def getCoordsets(self, indices=None, selected=True):
"""Returns a copy of coordinate set(s) at given *indices*, which may be
an integer, a list of integers or **None**. **None** returns all
coordinate sets. For reference coordinates, use :meth:`getCoords`
method."""
coords = self._getCoordsets(indices, selected)
return copy(coords)
def _getCoordsets(self, indices=None, selected=True):
if self._confs is None:
return None
if self._indices is None or not selected:
if indices is None:
return self._confs
try:
return self._confs[indices]
except IndexError:
pass
else:
selids = self._indices
if indices is None:
return self._confs[:, selids]
try:
return self._confs[indices, selids]
except IndexError:
pass
raise IndexError('indices must be an integer, a list/array of '
'integers, a slice, or None')
[docs] def delCoordset(self, index):
"""Delete a coordinate set from the ensemble."""
if isscalar(index):
index = [index]
else:
index = list(index)
length = self._n_csets
which = ones(length, bool)
which[index] = False
if which.sum() == 0:
self._confs = None
self._weights = None
else:
self._confs = self._confs[which]
if self._weights is not None:
self._weights = self._weights[which]
self._n_csets -= len(index)
[docs] def iterCoordsets(self):
"""Iterate over coordinate sets. A copy of each coordinate set for
selected atoms is returned. Reference coordinates are not included."""
if self._indices is None:
for conf in self._confs:
yield conf.copy()
else:
indices = self._indices
for conf in self._confs:
yield conf[indices].copy()
[docs] def superpose(self, **kwargs):
"""Superpose the ensemble onto the reference coordinates.
:arg ref: index of the reference coordinate. If **None**, the average
coordinate will be assumed as the reference. Default is **None**
:type ref: int
"""
ref = kwargs.pop('ref', None)
if self._coords is None:
raise ValueError('coordinates are not set, use `setCoords`')
if self._confs is None or len(self._confs) == 0:
raise ValueError('conformations are not set, use `addCoordset`')
LOGGER.timeit('_prody_ensemble')
self._superpose(ref=ref) # trans kwarg is used by PDBEnsemble
LOGGER.report('Superposition completed in %.2f seconds.',
'_prody_ensemble')
def _superpose(self, **kwargs):
"""Superpose conformations and update coordinates."""
ref = kwargs.pop('ref', None)
quiet = kwargs.pop('quiet', False)
indices = self._indices
weights = self._weights
mobs = self._confs
if indices is None:
idx = False
tar = self._coords
movs = None
else:
idx = True
if self._weights is not None:
weights = weights[indices]
tar = self._coords[indices]
movs = self._confs
linalg = importLA()
svd = linalg.svd
det = linalg.det
if weights is None:
if ref is None:
tar_com = tar.mean(0)
else:
tar_com = tar[ref]
tar_org = (tar - tar_com)
mob_org = zeros(tar_org.shape, dtype=mobs.dtype)
tar_org = tar_org.T
else:
weights_sum = weights.sum()
weights_dot = dot(weights.T, weights)
if ref is None:
tar_com = (tar * weights).sum(axis=0) / weights_sum
else:
tar_com = (tar[ref] * weights[ref]).sum(axis=0) / sum(weights[ref])
tar_org = (tar - tar_com)
mob_org = zeros(tar_org.shape, dtype=mobs.dtype)
if not quiet:
LOGGER.progress('Superposing ', len(mobs), '_prody_ensemble')
for i, mob in enumerate(mobs):
if idx:
mob = mob[indices]
if weights is None:
mob_com = mob.mean(0)
matrix = dot(tar_org, subtract(mob, mob_com, mob_org))
else:
mob_com = (mob * weights).sum(axis=0) / weights_sum
subtract(mob, mob_com, mob_org)
matrix = dot((tar_org * weights).T,
(mob_org * weights)) / weights_dot
U, s, Vh = svd(matrix)
Id = array([[1, 0, 0], [0, 1, 0], [0, 0, sign(det(matrix))]])
rotation = dot(Vh.T, dot(Id, U.T))
if movs is None:
mobs[i] = dot(mob_org, rotation)
add(mobs[i], tar_com, mobs[i])
else:
add(dot(movs[i], rotation),
(tar_com - dot(mob_com, rotation)), movs[i])
if not quiet:
LOGGER.update(i + 1, label='_prody_ensemble')
LOGGER.finish()
[docs] def iterpose(self, rmsd=0.0001, quiet=False):
"""Iteratively superpose the ensemble until convergence. Initially,
all conformations are aligned with the reference coordinates. Then
mean coordinates are calculated, and are set as the new reference
coordinates. This is repeated until reference coordinates do not
change. This is determined by the value of RMSD between the new and
old reference coordinates. Note that at the end of the iterative
procedure the reference coordinate set will be average of conformations
in the ensemble.
:arg rmsd: change in reference coordinates to determine convergence,
default is 0.0001 Å RMSD
:type rmsd: float"""
if self._coords is None:
raise AttributeError('coordinates are not set, use `setCoords`')
if self._confs is None or len(self._confs) == 0:
raise AttributeError('conformations are not set, use'
'`addCoordset`')
LOGGER.info('Starting iterative superposition:')
LOGGER.timeit('_prody_ensemble')
rmsdif = 1
step = 0
weights = self._weights
length = len(self)
if weights is not None:
if weights.ndim == 3:
weightsum = weights.sum(axis=0)
weightsum[weightsum==0.] = 1. # add pseudocount to avoid nan
else:
weightsum = length
while rmsdif > rmsd:
self._superpose(quiet=quiet)
if weights is None:
newxyz = self._confs.sum(0) / length
else:
newxyz = (self._confs * weights).sum(0) / weightsum
rmsdif = getRMSD(self._coords, newxyz)
self._coords = newxyz
step += 1
LOGGER.info('Step #{0}: RMSD difference = {1:.4e}'
.format(step, rmsdif))
LOGGER.report('Iterative superposition completed in %.2fs.',
'_prody_ensemble')
[docs] def getMSFs(self):
"""Returns mean square fluctuations (MSFs) for selected atoms.
Conformations can be aligned using one of :meth:`superpose` or
:meth:`iterpose` methods prior to MSF calculation."""
if self._confs is None:
return
indices = self._indices
if indices is None:
mean = self._confs.mean(0)
ssqf = zeros(mean.shape)
for conf in self._confs:
ssqf += (conf - mean) ** 2
else:
mean = self._confs[:, indices].mean(0)
ssqf = zeros(mean.shape)
for conf in self._confs[:, indices]:
ssqf += (conf - mean) ** 2
return ssqf.sum(1) / self._n_csets
[docs] def getRMSFs(self):
"""Returns root mean square fluctuations (RMSFs) for selected atoms.
Conformations can be aligned using one of :meth:`superpose` or
:meth:`iterpose` methods prior to RMSF calculation."""
return self.getMSFs() ** 0.5
[docs] def getDeviations(self):
"""Returns deviations from reference coordinates for selected atoms.
Conformations can be aligned using one of :meth:`superpose` or
:meth:`iterpose` methods prior to calculating deviations."""
if not isinstance(self._confs, ndarray):
LOGGER.warning('Conformations are not set.')
return None
if not isinstance(self._coords, ndarray):
LOGGER.warning('Coordinates are not set.')
return None
return self._getCoordsets() - self._getCoords()
[docs] def getRMSDs(self, pairwise=False):
"""Returns root mean square deviations (RMSDs) for selected atoms.
Conformations can be aligned using one of :meth:`superpose` or
:meth:`iterpose` methods prior to RMSD calculation.
:arg pairwise: if **True** then it will return pairwise RMSDs
as an n-by-n matrix. n is the number of conformations.
:type pairwise: bool
"""
if self._confs is None or self._coords is None:
return None
indices = self._indices
if indices is None:
indices = arange(self._confs.shape[1])
weights = self._weights[indices] if self._weights is not None else None
if pairwise:
n_confs = self.numConfs()
RMSDs = zeros((n_confs, n_confs))
for i in range(n_confs):
for j in range(i+1, n_confs):
RMSDs[i, j] = RMSDs[j, i] = getRMSD(self._confs[i, indices], self._confs[j, indices], weights)
else:
RMSDs = getRMSD(self._coords[indices], self._confs[:, indices], weights)
return RMSDs
[docs] def getDefvecs(self, pairwise=False):
"""Calculate and return deformation vectors (defvecs). Note that
you might need to align the conformations using :meth:`superpose` or
:meth:`iterpose` before calculating defvecs.
:arg pairwise: if **True** then it will return pairwise defvecs
as an n-by-n matrix. n is the number of conformations.
:type pairwise: bool
"""
if self._confs is None or self._coords is None:
return None
indices = self._indices
if indices is None:
indices = arange(self._confs.shape[1])
if self._weights is not None:
if self._weights.ndim == 2:
# Ensemble but not PDBEnsemble
weights = tile(self._weights, (self.numConfs(), 1, 1))
weights = self._weights[:, indices]
else:
weights = None
if pairwise:
n_confs = self.numConfs()
defvecs = empty((n_confs, n_confs), dtype=ndarray)
for i in range(n_confs):
for j in range(i, n_confs):
if weights is None:
w = None
else:
wi = weights[i]; wj = weights[j]
w = wi * wj
defvecs[i, j] = defvecs[j, i] = calcDeformVector(self._confs[i, indices],
self._confs[j, indices], w)
else:
defvecs = [calcDeformVector(self._coords[indices], conf[indices], weights[i])
for i, conf in enumerate(self._confs)]
return defvecs
[docs] def setData(self, label, data):
"""Store atomic *data* under *label*, which must:
* start with a letter
* contain only alphanumeric characters and underscore
* not be a reserved word (see :func:`.listReservedWords`)
*data* must be a :func:`list` or a :class:`~numpy.ndarray` and its
length must be equal to the number of atoms. If the dimension of the
*data* array is 1, i.e. ``data.ndim==1``, *label* may be used to make
atom selections, e.g. ``"label 1 to 10"`` or ``"label C1 C2"``. Note
that, if data with *label* is present, it will be overwritten."""
label = checkLabel(label)
if isscalar(data):
data = [data] * self._n_csets
data = asarray(data)
ndim, dtype, shape = data.ndim, data.dtype, data.shape
if ndim == 1 and dtype == bool:
raise TypeError('1 dimensional boolean arrays are not '
'accepted, use `setFlags` instead')
if len(data) != self._n_csets:
raise ValueError('len(data) must match number of coordinate sets')
self._data[label] = data
[docs] def delData(self, label):
"""Return data associated with *label* and remove from the instance.
If data associated with *label* is not found, return **None**."""
return self._data.pop(label, None)
[docs] def getData(self, label):
"""Returns a copy of the data array associated with *label*, or **None**
if such data is not present."""
data = self._getData(label)
if data is not None:
return data.copy()
def _getData(self, label):
"""Returns data array associated with *label*, or **None** if such data
is not present."""
try:
return self._data[label]
except KeyError:
return None
[docs] def isDataLabel(self, label):
"""Returns **True** if data associated with *label* is present."""
if label in self._data:
return True
else:
try:
return self._getData(label) is not None
except:
return False
[docs] def getDataLabels(self, which=None):
"""Returns data labels. For ``which='user'``, return only labels of
user provided data."""
if str(which).startswith('u'): # user
labels = [key for key in (self._data or {})]
else:
labels = list(self._data or [])
labels.sort()
return labels
[docs] def getDataType(self, label):
"""Returns type of the data (i.e. ``data.dtype``) associated with
*label*, or **None** label is not used."""
try:
return self._data[label].dtype
except KeyError:
return None