Source code for prody.ensemble.pdbensemble

"""This module defines a class for handling ensembles of PDB conformations."""

from numbers import Integral
import numpy as np

from prody.sequence import MSA, Sequence
from prody.atomic import Atomic, AtomGroup
from prody.measure import getRMSD, getTransformation, Transformation
from prody.utilities import checkCoords, checkWeights, copy
from prody import LOGGER

from .ensemble import Ensemble
from .conformation import PDBConformation

__all__ = ['PDBEnsemble']


[docs]class PDBEnsemble(Ensemble): """This class enables handling coordinates for heterogeneous structural datasets and stores identifiers for individual conformations. See usage usage in :ref:`pca-xray`, :ref:`pca-dimer`, and :ref:`pca-blast`. .. note:: This class is designed to handle conformations with missing coordinates, e.g. atoms that are note resolved in an X-ray structure. For unresolved atoms, the coordinates of the reference structure is assumed in RMSD calculations and superpositions.""" def __init__(self, title='Unknown'): self._labels = [] self._trans = None self._msa = None Ensemble.__init__(self, title) def __add__(self, other): """Concatenate two ensembles. The reference coordinates of *self* is used in the result.""" if not isinstance(other, Ensemble): raise TypeError('an Ensemble instance cannot be added to an {0} ' 'instance'.format(type(other))) elif self.numAtoms() != other.numAtoms(): raise ValueError('Ensembles must have same number of atoms.') ensemble = PDBEnsemble('{0} + {1}'.format(self.getTitle(), other.getTitle())) if self._coords is not None: ensemble.setCoords(self._coords.copy()) weights = copy(self._weights) if self._confs is not None: ensemble.addCoordset(copy(self._confs), weights=weights, label=self.getLabels(), sequence=self._msa) other_weights = copy(other._weights) ensemble.addCoordset(copy(other._confs), weights=other_weights, label=other.getLabels(), sequence=other._msa) if self._atoms is not None: ensemble.setAtoms(self._atoms) ensemble._indices = self._indices else: ensemble.setAtoms(other._atoms) ensemble._indices = other._indices selfdata = self._data if self._data is not None else {} otherdata = other._data if other._data is not None else {} all_keys = set(list(selfdata.keys()) + list(otherdata.keys())) for key in all_keys: if key in selfdata and key in otherdata: self_data = selfdata[key] other_data = otherdata[key] elif key in selfdata: self_data = selfdata[key] other_data = np.zeros(other.numConfs(), dtype=self_data.dtype) elif key in otherdata: other_data = otherdata[key] self_data = np.zeros(other.numConfs(), dtype=other_data.dtype) ensemble._data[key] = np.concatenate((self_data, other_data), axis=0) return ensemble def __iter__(self): n_confs = self._n_csets for i in range(n_confs): if n_confs != self._n_csets: raise RuntimeError('number of conformations in the ensemble ' 'changed during iteration') yield PDBConformation(self, i) def __getitem__(self, index): """Returns a conformation at given index.""" msa = self._msa labels = self._labels if msa: msa = self._msa[index] if isinstance(index, Integral): return self.getConformation(index) elif isinstance(index, slice): ens = PDBEnsemble('{0} ({1[0]}:{1[1]}:{1[2]})'.format( self._title, index.indices(len(self)))) if self._coords is not None: ens.setCoords(self._coords.copy()) ens.addCoordset(self._confs[index].copy(), self._weights[index].copy(), label=self._labels[index], sequence=msa) if self._trans is not None: ens._trans = self._trans[index] ens.setAtoms(self._atoms) ens._indices = self._indices for key in self._data.keys(): ens._data[key] = self._data[key][index].copy() return ens elif isinstance(index, (list, np.ndarray)): index2 = list(index) for i in range(len(index)): if isinstance(index[i], str): try: index2[i] = labels.index(index[i]) except ValueError: raise IndexError('invalid label: %s'%index[i]) ens = PDBEnsemble('{0}'.format(self._title)) if self._coords is not None: ens.setCoords(self._coords.copy()) labels = list(np.array(self._labels)[index2]) ens.addCoordset(self._confs[index2].copy(), self._weights[index2].copy(), label=labels, sequence=msa) if self._trans is not None: ens._trans = self._trans[index2] ens.setAtoms(self._atoms) ens._indices = self._indices for key in self._data.keys(): ens._data[key] = self._data[key][index].copy() return ens elif isinstance(index, str): try: i = labels.index(index) return self.getConformation(i) except ValueError: raise IndexError('invalid label: %s'%index) else: raise IndexError('invalid index')
[docs] def superpose(self, **kwargs): """Superpose the ensemble onto the reference coordinates obtained by :meth:`getCoords`. """ trans = kwargs.pop('trans', True) if self._coords is None: raise ValueError('coordinates are not set, use `setCoords`') if self._confs is None or len(self._confs) == 0: raise ValueError('conformations are not set, use `addCoordset`') LOGGER.timeit('_prody_ensemble') self._superpose(trans=trans) # trans kwarg is used by PDBEnsemble LOGGER.report('Superposition completed in %.2f seconds.', '_prody_ensemble')
def _superpose(self, **kwargs): """Superpose conformations and update coordinates.""" calcT = getTransformation if kwargs.get('trans', False): if self._trans is not None: LOGGER.info('Existing transformations will be overwritten.') trans = np.zeros((self._n_csets, 4, 4)) else: trans = None indices = self._indices if indices is None: weights = self._weights coords = self._coords confs = self._confs confs_selected = self._confs else: weights = self._weights[:, indices] coords = self._coords[indices] confs = self._confs confs_selected = self._confs[:, indices] for i, conf in enumerate(confs_selected): rmat, tvec = calcT(conf, coords, weights[i]) if trans is not None: trans[i][:3, :3] = rmat trans[i][:3, 3] = tvec confs[i] = tvec + np.dot(confs[i], rmat.T) self._trans = trans
[docs] def iterpose(self, rmsd=0.0001): confs = copy(self._confs) Ensemble.iterpose(self, rmsd) self._confs = confs LOGGER.info('Final superposition to calculate transformations.') self.superpose()
iterpose.__doc__ = Ensemble.iterpose.__doc__
[docs] def addCoordset(self, coords, weights=None, label=None, **kwargs): """Add coordinate set(s) to the ensemble. *coords* must be a Numpy array with suitable shape and dimensionality, or an object with :meth:`getCoordsets`. *weights* is an optional argument. If provided, its length must match number of atoms. Weights of missing (not resolved) atoms must be ``0`` and weights of those that are resolved can be anything greater than ``0``. If not provided, weights of all atoms for this coordinate set will be set equal to ``1``. *label*, which may be a PDB identifier or a list of identifiers, is used to label conformations.""" degeneracy = kwargs.pop('degeneracy', False) adddata = kwargs.pop('data', None) atoms = coords n_atoms = self._n_atoms n_select = self.numSelected() n_confs = self.numCoordsets() try: if degeneracy: if self._coords is not None: if isinstance(coords, Ensemble): coords = coords._getCoords(selected=False) elif hasattr(coords, '_getCoords'): coords = coords._getCoords() else: if isinstance(coords, Ensemble): coords = coords.getCoords(selected=False) elif hasattr(coords, 'getCoords'): coords = coords.getCoords() else: if self._coords is not None: if isinstance(coords, Ensemble): coords = coords._getCoordsets(selected=False) elif hasattr(coords, '_getCoordsets'): coords = coords._getCoordsets() else: if isinstance(coords, Ensemble): coords = coords.getCoordsets(selected=False) elif hasattr(coords, 'getCoordsets'): coords = coords.getCoordsets() except AttributeError: label = label or 'Unknown' else: if coords is None: raise ValueError('coordinates are not set') elif label is None and isinstance(atoms, Atomic): if not isinstance(atoms, AtomGroup): ag = atoms.getAtomGroup() else: ag = atoms label = ag.getTitle() if coords.shape[0] < ag.numCoordsets(): label += '_m' + str(atoms.getACSIndex()) else: label = label or 'Unknown' # check coordinates try: checkCoords(coords, csets=True, natoms=n_atoms) except: try: checkCoords(coords, csets=True, natoms=n_select) except TypeError: raise TypeError('coords must be a numpy array or an object ' 'with `getCoords` method') if coords.ndim == 2: n_nodes, _ = coords.shape coords = coords.reshape((1, n_nodes, 3)) n_csets = 1 else: n_csets, n_nodes, _ = coords.shape if degeneracy: coords = coords[:1] n_repeats = 1 if degeneracy else n_csets if not n_atoms: self._n_atoms = n_nodes n_atoms = self._n_atoms if n_nodes == n_select and self.isSelected(): full_coords = np.repeat(self._coords[np.newaxis, :, :], n_csets, axis=0) full_coords[:, self._indices, :] = coords coords = full_coords # check weights if weights is None: weights = np.ones((n_csets, n_atoms, 1), dtype=float) else: weights = checkWeights(weights, n_atoms, n_csets) if degeneracy: weights = weights[:1] # check sequences seqs = None sequence = kwargs.pop('sequence', None) if hasattr(atoms, 'getSequence'): if sequence is not None: LOGGER.warn('sequence is supplied though coords has getSequence') sequence = atoms.getSequence() seqs = [sequence for _ in range(n_repeats)] else: if sequence is None: try: sequence = self._atoms.getSequence() except AttributeError: if self._msa: sequence = ''.join('X' for _ in range(n_atoms)) # sequence and seqs remains to be None if MSA has not been created if isinstance(sequence, Sequence): seqs = [str(sequence)] elif isinstance(sequence, MSA): seqs = [str(seq) for seq in sequence] elif np.isscalar(sequence): seqs = [sequence for _ in range(n_repeats)] if seqs: if len(seqs) != n_repeats: raise ValueError('the number of sequences should be either one or ' 'that of coordsets') # assign new values # update labels if n_csets > 1 and not degeneracy: if isinstance(label, str): labels = ['{0}_m{1}'.format(label, i+1) for i in range(n_csets)] else: if len(label) != n_csets: raise ValueError('length of label and number of ' 'coordinate sets must be the same') labels = label else: labels = [label] if np.isscalar(label) else label self._labels.extend(labels) # update sequences if seqs: msa = MSA(seqs, title=self.getTitle(), labels=labels) if self._msa is None: if n_confs > 0: def_seqs = np.chararray((n_confs, n_atoms)) def_seqs[:] = 'X' old_labels = [self._labels[i] for i in range(n_confs)] self._msa = MSA(def_seqs, title=self.getTitle(), labels=old_labels) self._msa.extend(msa) else: self._msa = msa else: self._msa.extend(msa) # update coordinates if self._confs is None and self._weights is None: self._confs = coords self._weights = weights elif self._confs is not None and self._weights is not None: self._confs = np.concatenate((self._confs, coords), axis=0) self._weights = np.concatenate((self._weights, weights), axis=0) else: raise RuntimeError('_confs and _weights must be set or None at ' 'the same time') # appending new data if self._data is not None and adddata is not None: if self._data is None: self._data = {} if adddata is None: adddata = {} all_keys = set(list(self._data.keys()) + list(adddata.keys())) for key in all_keys: if key in self._data: data = self._data[key] if key not in adddata: shape = [n_repeats] for s in data.shape[1:]: shape.append(s) newdata = np.zeros(shape, dtype=data.dtype) else: newdata = np.asarray(adddata[key]) if newdata.shape[0] != n_repeats: raise ValueError('the length of data["%s"] does not match that of coords'%key) else: newdata = np.asarray(adddata[key]) shape = [self._n_csets] for s in newdata.shape[1:]: shape.append(s) data = np.zeros(shape, dtype=newdata.dtype) self._data[key] = np.concatenate((data, newdata), axis=0) # update the number of coordinate sets self._n_csets += n_repeats
[docs] def getMSA(self, indices=None, selected=True): """Returns an MSA of selected atoms.""" selected = selected and self._indices is not None if self._msa is None: return None atom_indices = self._indices if selected else slice(None, None, None) indices = indices if indices is not None else slice(None, None, None) return self._msa[indices, atom_indices]
[docs] def getLabels(self): """Returns identifiers of the conformations in the ensemble.""" return list(self._labels)
[docs] def getCoordsets(self, indices=None, selected=True): """Returns a copy of coordinate set(s) at given *indices* for selected atoms. *indices* may be an integer, a list of integers or **None**. **None** returns all coordinate sets. .. warning:: When there are atoms with weights equal to zero (0), their coordinates will be replaced with the coordinates of the ensemble reference coordinate set.""" if self._confs is None: return None if indices is None: indices = slice(None) else: indices = np.array([indices]).flatten() coords = self._coords if self._indices is None or not selected: confs = self._confs[indices].copy() for i, w in enumerate(self._weights[indices]): which = w.flatten() == 0 confs[i, which] = coords[which] else: selids = self._indices coords = coords[selids] confs = self._confs[indices, selids].copy() for i, w in enumerate(self._weights[indices]): which = w[selids].flatten() == 0 confs[i, which] = coords[which] return confs
_getCoordsets = getCoordsets
[docs] def iterCoordsets(self): """Iterate over coordinate sets. A copy of each coordinate set for selected atoms is returned. Reference coordinates are not included.""" conf = PDBConformation(self, 0) for i in range(self._n_csets): conf._index = i yield conf.getCoords()
[docs] def delCoordset(self, index): """Delete a coordinate set from the ensemble.""" Ensemble.delCoordset(self, index) if isinstance(index, Integral): index = [index] else: index = list(index) index.sort(reverse=True) for i in index: self._labels.pop(i) if self._msa is not None: rest = [] for i in range(self._msa.numSequences()): if i not in index: rest.append(i) self._msa = self._msa[rest]
[docs] def getConformation(self, index): """Returns conformation at given index.""" if self._confs is None: raise AttributeError('conformations are not set') if not isinstance(index, Integral): raise TypeError('index must be an integer') n_confs = self._n_csets if -n_confs <= index < n_confs: if index < 0: index = n_confs + index return PDBConformation(self, index) else: raise IndexError('conformation index out of range')
[docs] def getMSFs(self): """Calculate and return mean square fluctuations (MSFs). Note that you might need to align the conformations using :meth:`superpose` or :meth:`iterpose` before calculating MSFs.""" if self._confs is None: return indices = self._indices if indices is None: coords = self._coords confs = self._confs weights = self._weights > 0 else: coords = self._coords[indices] confs = self._confs[:, indices] weights = self._weights[:, indices] > 0 weightsum = weights.sum(0) mean = np.zeros(coords.shape) for i, conf in enumerate(confs): mean += conf * weights[i] mean /= weightsum ssqf = np.zeros(mean.shape) for i, conf in enumerate(confs): ssqf += ((conf - mean) * weights[i]) ** 2 return ssqf.sum(1) / weightsum.flatten()
[docs] def getRMSDs(self, pairwise=False): """Calculate and return root mean square deviations (RMSDs). Note that you might need to align the conformations using :meth:`superpose` or :meth:`iterpose` before calculating RMSDs. :arg pairwise: if **True** then it will return pairwise RMSDs as an n-by-n matrix. n is the number of conformations. :type pairwise: bool """ if self._confs is None or self._coords is None: return None indices = self._indices if indices is None: indices = np.arange(self._confs.shape[1]) weights = self._weights[:, indices] if self._weights is not None else None if pairwise: n_confs = self.numConfs() RMSDs = np.zeros((n_confs, n_confs)) for i in range(n_confs): for j in range(i+1, n_confs): if weights is None: w = None else: wi = weights[i]; wj = weights[j] w = wi * wj RMSDs[i, j] = RMSDs[j, i] = getRMSD(self._confs[i, indices], self._confs[j, indices], w) else: RMSDs = getRMSD(self._coords[indices], self._confs[:, indices], weights) return RMSDs
[docs] def setWeights(self, weights): """Set atomic weights.""" if self._n_atoms == 0: raise AttributeError('coordinates are not set') try: self._weights = checkWeights(weights, self._n_atoms, self._n_csets) except ValueError: weights = checkWeights(weights, self.numSelected(), self._n_csets) if not self._weights: self._weights = np.ones((self._n_csets, self._n_atoms, 1), dtype=float) self._weights[self._indices, :] = weights
[docs] def getTransformations(self): """Returns the :class:`~.Transformation` used to superpose this conformation onto reference coordinates. The transformation can be used to superpose original PDB file onto the reference PDB file.""" if self._trans is not None: return [Transformation(trans) for trans in self._trans] return