# -*- coding: utf-8 -*-
"""This module defines a class and methods and for comparing coordinate data
and measuring quantities."""
from numpy import ndarray, power, sqrt, array, zeros, arccos, dot
from numpy import sign, tile, concatenate, pi, cross, subtract, var
from prody.atomic import Atomic, Residue, Atom
from prody.utilities import importLA, solveEig, checkCoords, getDistance, getCoords
from prody import LOGGER, PY2K
if PY2K:
range = xrange
__all__ = ['buildDistMatrix', 'calcDistance',
'calcCenter', 'calcGyradius', 'calcAngle',
'calcDihedral', 'calcOmega', 'calcPhi', 'calcPsi',
'calcMSF', 'calcRMSF',
'calcDeformVector',
'buildADPMatrix', 'calcADPAxes', 'calcADPs',
'pickCentral', 'pickCentralAtom', 'pickCentralConf', 'getWeights',
'calcInertiaTensor', 'calcPrincAxes']
RAD2DEG = 180 / pi
DISTMAT_FORMATS = set(['mat', 'rcd', 'arr'])
[docs]def buildDistMatrix(atoms1, atoms2=None, unitcell=None, format='mat'):
"""Returns distance matrix. When *atoms2* is given, a distance matrix
with shape ``(len(atoms1), len(atoms2))`` is built. When *atoms2* is
**None**, a symmetric matrix with shape ``(len(atoms1), len(atoms1))``
is built. If *unitcell* array is provided, periodic boundary conditions
will be taken into account.
:arg atoms1: atom or coordinate data
:type atoms1: :class:`.Atomic`, :class:`numpy.ndarray`
:arg atoms2: atom or coordinate data
:type atoms2: :class:`.Atomic`, :class:`numpy.ndarray`
:arg unitcell: orthorhombic unitcell dimension array with shape ``(3,)``
:type unitcell: :class:`numpy.ndarray`
:arg format: format of the resulting array, one of ``'mat'`` (matrix,
default), ``'rcd'`` (arrays of row indices, column indices, and
distances), or ``'arr'`` (only array of distances)
:type format: bool"""
if not isinstance(atoms1, ndarray):
try:
atoms1 = atoms1._getCoords()
except AttributeError:
raise TypeError('atoms1 must be Atomic instance or an array')
if atoms2 is None:
symmetric = True
atoms2 = atoms1
else:
symmetric = False
if not isinstance(atoms2, ndarray):
try:
atoms2 = atoms2._getCoords()
except AttributeError:
raise TypeError('atoms2 must be Atomic instance or an array')
if atoms2.ndim == 1:
atoms2 = atoms2.reshape((1,3))
if atoms1.shape[-1] != 3 or atoms2.shape[-1] != 3:
raise ValueError('one and two must have shape ([M,]N,3)')
if unitcell is not None:
if not isinstance(unitcell, ndarray):
raise TypeError('unitcell must be an array')
elif unitcell.shape != (3,):
raise ValueError('unitcell.shape must be (3,)')
dist = zeros((len(atoms1), len(atoms2)))
if symmetric:
if format not in DISTMAT_FORMATS:
raise ValueError('format must be one of mat, rcd, or arr')
if format == 'mat':
for i, xyz in enumerate(atoms1[:-1]):
dist[i, i+1:] = dist[i+1:, i] = getDistance(xyz, atoms2[i+1:],
unitcell)
else:
dist = concatenate([getDistance(xyz, atoms2[i+1:], unitcell)
for i, xyz in enumerate(atoms1)])
if format == 'rcd':
n_atoms = len(atoms1)
rc = array([(i, j) for i in range(n_atoms)
for j in range(i + 1, n_atoms)])
row, col = rc.T
dist = (row, col, dist)
else:
for i, xyz in enumerate(atoms1):
dist[i] = getDistance(xyz, atoms2, unitcell)
return dist
[docs]def calcDistance(atoms1, atoms2, unitcell=None):
"""Returns the Euclidean distance between *atoms1* and *atoms2*. Arguments
may be :class:`~.Atomic` instances or NumPy arrays. Shape of numpy arrays
must be ``([M,]N,3)``, where *M* is number of coordinate sets and *N* is
the number of atoms. If *unitcell* array is provided, periodic boundary
conditions will be taken into account.
:arg atoms1: atom or coordinate data
:type atoms1: :class:`.Atomic`, :class:`numpy.ndarray`
:arg atoms2: atom or coordinate data
:type atoms2: :class:`.Atomic`, :class:`numpy.ndarray`
:arg unitcell: orthorhombic unitcell dimension array with shape ``(3,)``
:type unitcell: :class:`numpy.ndarray`"""
if not isinstance(atoms1, ndarray):
try:
atoms1 = atoms1._getCoords()
except AttributeError:
raise TypeError('atoms1 must be Atomic instance or an array')
if not isinstance(atoms2, ndarray):
try:
atoms2 = atoms2._getCoords()
except AttributeError:
raise TypeError('atoms2 must be Atomic instance or an array')
if atoms1.shape[-1] != 3 or atoms2.shape[-1] != 3:
raise ValueError('atoms1 and atoms2 must have shape ([M,]N,3)')
if unitcell is not None:
if not isinstance(unitcell, ndarray):
raise TypeError('unitcell must be an array')
elif unitcell.shape != (3,):
raise ValueError('unitcell.shape must be (3,)')
return getDistance(atoms1, atoms2, unitcell)
[docs]def calcAngle(atoms1, atoms2, atoms3, radian=False):
"""Returns the angle between atoms in degrees."""
if not isinstance(atoms1, Atomic):
raise TypeError('atoms1 must be an Atomic instance')
if not isinstance(atoms2, Atomic):
raise TypeError('atoms2 must be an Atomic instance')
if not isinstance(atoms3, Atomic):
raise TypeError('atoms3 must be an Atomic instance')
if not atoms1.numAtoms() == atoms2.numAtoms() == atoms3.numAtoms():
raise ValueError('all arguments must have same number of atoms')
return getAngle(atoms1._getCoords(), atoms2._getCoords(),
atoms3._getCoords(), radian)
def getAngle(coords1, coords2, coords3, radian=False):
"""Returns bond angle in degrees unless ``radian=True``"""
v1 = coords1 - coords2
v2 = coords3 - coords2
rad = arccos((v1*v2).sum(-1) / ((v1**2).sum(-1) * (v2**2).sum(-1))**0.5)
if radian:
return rad
else:
return rad * RAD2DEG
[docs]def calcDihedral(atoms1, atoms2, atoms3, atoms4, radian=False):
"""Returns the dihedral angle between atoms in degrees."""
if not isinstance(atoms1, Atomic):
raise TypeError('atoms1 must be an Atomic instance')
if not isinstance(atoms2, Atomic):
raise TypeError('atoms2 must be an Atomic instance')
if not isinstance(atoms3, Atomic):
raise TypeError('atoms3 must be an Atomic instance')
if not isinstance(atoms4, Atomic):
raise TypeError('atoms4 must be an Atomic instance')
if not (atoms1.numAtoms() == atoms2.numAtoms() ==
atoms3.numAtoms() == atoms4.numAtoms()):
raise ValueError('all arguments must have same number of atoms')
return getDihedral(atoms1._getCoords(), atoms2._getCoords(),
atoms3._getCoords(), atoms4._getCoords(), radian)
def getDihedral(coords1, coords2, coords3, coords4, radian=False):
"""Returns the dihedral angle in degrees unless ``radian=True``."""
a1 = coords2 - coords1
a2 = coords3 - coords2
a3 = coords4 - coords3
v1 = cross(a1, a2)
v1 = v1 / (v1 * v1).sum(-1)**0.5
v2 = cross(a2, a3)
v2 = v2 / (v2 * v2).sum(-1)**0.5
porm = sign((v1 * a3).sum(-1))
rad = arccos((v1*v2).sum(-1) / ((v1**2).sum(-1) * (v2**2).sum(-1))**0.5)
if not porm == 0:
rad = rad * porm
if radian:
return rad
else:
return rad * RAD2DEG
[docs]def calcOmega(residue, radian=False, dist=4.1):
"""Returns ω (omega) angle of *residue* in degrees. This function checks
the distance between Cα atoms of two residues and raises an exception if
the residues are disconnected. Set *dist* to **None**, to avoid this."""
if not isinstance(residue, Residue):
raise TypeError('{0} must be a Residue instance')
next = residue.getNext()
if not isinstance(next, Residue):
raise ValueError('{0} is a terminal residue'.format(str(residue)))
CA = residue['CA']
if CA is None:
raise ValueError('{0} does not have CA atom'.format(str(residue)))
C = residue['C']
if C is None:
raise ValueError('{0} does not have C atom'.format(str(residue)))
_N = next['N']
if _N is None:
raise ValueError('{0} does not have N atom'.format(str(residue)))
_CA = next['CA']
if _CA is None:
raise ValueError('{0} does not have CA atom'.format(str(next)))
if dist and dist < calcDistance(CA, _CA):
raise ValueError('{0} and {1} does not seem to be connected'
.format(str(residue), str(next)))
return getDihedral(CA._getCoords(), C._getCoords(), _N._getCoords(),
_CA._getCoords(), radian)
[docs]def calcPhi(residue, radian=False, dist=4.1):
"""Returns φ (phi) angle of *residue* in degrees. This function checks
the distance between Cα atoms of two residues and raises an exception if
the residues are disconnected. Set *dist* to **None**, to avoid this."""
if not isinstance(residue, Residue):
raise TypeError('{0} must be a Residue instance')
C_, N, CA, C = getPhiAtoms(residue, dist=dist)
return getDihedral(C_._getCoords(), N._getCoords(), CA._getCoords(),
C._getCoords(), radian)
def getPhiAtoms(residue, dist=4.1):
"""Returns the four atoms that form the φ (phi) angle of *residue*."""
prev = residue.getPrev()
try:
isaa = prev.isaminoacid
except AttributeError:
raise ValueError('{0} is a terminal residue'.format(str(residue)))
if not isaa:
raise ValueError('{0} is not an amino acid'.format(str(prev)))
C_ = prev['C']
if C_ is None:
raise ValueError('{0} does not have C atom'.format(str(prev)))
N = residue['N']
if N is None:
raise ValueError('{0} does not have N atom'.format(str(residue)))
CA = residue['CA']
if CA is None:
raise ValueError('{0} does not have CA atom'.format(str(residue)))
C = residue['C']
if C is None:
raise ValueError('{0} does not have C atom'.format(str(residue)))
CA_ = prev['CA']
if CA_ is None:
raise ValueError('{0} does not have CA atom'.format(str(prev)))
if dist and dist < calcDistance(CA, CA_):
raise ValueError('{0} and {1} does not seem to be connected'
.format(str(residue), str(prev)))
return C_, N, CA, C
[docs]def calcPsi(residue, radian=False, dist=4.1):
"""Returns ψ (psi) angle of *residue* in degrees. This function checks
the distance between Cα atoms of two residues and raises an exception if
the residues are disconnected. Set *dist* to **None**, to avoid this."""
if not isinstance(residue, Residue):
raise TypeError('{0} must be a Residue instance')
N, CA, C, _N = getPsiAtoms(residue, dist=dist)
return getDihedral(N._getCoords(), CA._getCoords(), C._getCoords(),
_N._getCoords(), radian)
def getPsiAtoms(residue, dist=4.1):
"""Returns the four atoms that form the φ (phi) angle of *residue*."""
next = residue.getNext()
try:
isaa = next.isaminoacid
except AttributeError:
raise ValueError('{0} is a terminal residue'.format(str(residue)))
if not isaa:
raise ValueError('{0} is not an amino acid'.format(str(next)))
N = residue['N']
if N is None:
raise ValueError('{0} does not have N atom'.format(str(residue)))
CA = residue['CA']
if CA is None:
raise ValueError('{0} does not have CA atom'.format(str(residue)))
C = residue['C']
if C is None:
raise ValueError('{0} does not have C atom'.format(str(residue)))
_N = next['N']
if _N is None:
raise ValueError('{0} does not have N atom'.format(str(next)))
_CA = next['CA']
if _CA is None:
raise ValueError('{0} does not have CA atom'.format(str(next)))
if dist and dist < calcDistance(CA, _CA):
raise ValueError('{0} and {1} does not seem to be connected'
.format(str(residue), str(next)))
return N, CA, C, _N
[docs]def calcCenter(atoms, weights=None):
"""Returns geometric center of *atoms*. If *weights* is given it must
be a flat array with length equal to number of atoms. Mass center of
atoms can be calculated by setting weights equal to atom masses, i.e.
``weights=atoms.getMasses()``."""
try:
coords = atoms._getCoords()
except AttributeError:
try:
coords = atoms.getCoords()
except AttributeError:
coords = atoms
try:
checkCoords(coords, csets=True, dtype=None, name='atoms')
except TypeError:
raise TypeError('atoms must be an Atomic instance')
if weights is not None:
try:
ndim, shape = weights.ndim, weights.shape
except AttributeError:
raise TypeError('weights must be a numpy array')
else:
if shape[0] != coords.shape[-2]:
raise ValueError('weights.shape[0] must be equal to number of '
'atoms')
if ndim != 2:
try:
weights = weights.reshape((shape[0], 1))
except ValueError:
raise ValueError('weights.shape must be a (n_atoms, 1)')
return getCenter(coords, weights)
def getCenter(coords, weights=None):
if weights is None:
return coords.mean(-2)
else:
return (coords * weights).sum(-2) / weights.sum()
def getWeights(pdb):
weights = zeros(len(pdb))
for i in range(len(pdb)):
weights[i]=pdb[i].getMassess()
return weights
[docs]def pickCentral(obj, weights=None):
"""Returns :class:`.Atom` or :class:`.Conformation` that is closest to the
center of *obj*, which may be an :class:`.Atomic` or :class:`.Ensemble`
instance. See also :func:`pickCentralAtom`, and :func:`pickCentralConf`
functions."""
try:
obj.getACSIndex()
except AttributeError:
try:
obj.numConfs()
except AttributeError:
raise TypeError('obj must be an Atomic or Ensemble instance')
else:
return pickCentralConf(obj, weights)
else:
return pickCentralAtom(obj, weights)
[docs]def pickCentralAtom(atoms, weights=None):
"""Returns :class:`.Atom` that is closest to the center, which is calculated
using :func:`calcCenter`."""
try:
acsi, coords = atoms.getACSIndex(), atoms._getCoords()
except AttributeError:
raise TypeError('atoms must be an Atomic instance')
else:
if coords is None:
raise ValueError('coordinates are not set')
try:
ag = atoms.getAtomGroup()
except AttributeError:
ag = atoms
indices = None
else:
indices = atoms._getIndices()
if len(indices) == 1:
return Atom(ag, indices[0], acsi)
index = getCentral(atoms._getCoords(), weights)
if indices is not None:
index = indices[index]
return Atom(ag, index, acsi)
def getCentral(coords, weights=None):
"""Returns index of coordinates closest to the center."""
return ((coords - getCenter(coords, weights))**2).sum(1).argmin()
[docs]def pickCentralConf(ens, weights=None):
"""Returns :class:`.Conformation` that is closest to the center of *ens*.
In addition to :class:`.Ensemble` instances, :class:`.Atomic` instances
are accepted as *ens* argument. In this case a :class:`.Selection` with
central coordinate set as active will be returned."""
try:
csets = ens._getCoordsets()
except AttributeError:
raise TypeError('ens must be an object with multiple '
'coordinate sets')
else:
if csets is None:
raise ValueError('coordinates are not set')
shape = csets.shape
if shape[0] == 1:
index = 0
else:
csets = csets.reshape((shape[0], shape[1] * shape[2]))
mean = csets.mean(0)
index = ((csets - mean)**2).sum(1).argmin()
try:
ens.getACSIndex()
except AttributeError:
return ens[index]
else:
atoms = ens.select('all')
atoms.setACSIndex(index)
return atoms
[docs]def calcGyradius(atoms, weights=None):
"""Calculate radius of gyration of *atoms*."""
if not isinstance(atoms, ndarray):
try:
coords = atoms._getCoords()
except AttributeError:
raise TypeError('atoms must have atomic coordinate data')
else:
coords = atoms
if not coords.ndim in (2, 3):
raise ValueError('coords may be a 2 or 3 dimentional array')
elif coords.shape[-1] != 3:
raise ValueError('coords must have shape ([n_csets,]n_atoms,3)')
if weights is not None:
weights = weights.flatten()
weights = weights.reshape(weights.shape[0], 1)
if len(weights) != coords.shape[-2]:
raise ValueError('length of weights must match number of atoms')
wsum = weights.sum()
else:
wsum = coords.shape[-2]
if coords.ndim == 2:
if weights is None:
com = coords.mean(0)
d2sum = ((coords - com)**2).sum()
else:
com = (coords * weights).sum(0) / wsum
d2sum = (((coords - com)**2) * weights).sum()
else:
rgyr = []
for coords in coords:
if weights is None:
com = coords.mean(0)
d2sum = ((coords - com)**2).sum()
rgyr.append(d2sum)
else:
com = (coords * weights).sum(0) / wsum
d2sum = (((coords - com)**2) * weights).sum()
rgyr.append(d2sum)
d2sum = array(rgyr)
return (d2sum / wsum) ** 0.5
_MSF_DOCSTRING = """ *coordsets* may be an
instance of :class:`.Ensemble`, :class:`.TrajBase`, or :class:`.Atomic`.
For trajectory objects, e.g. :class:`.DCDFile`, frames will be considered
after they are superposed. For other ProDy objects, coordinate sets should
be aligned prior to MSF calculation.
Note that using trajectory files that store 32-bit coordinate will result
in lower precision in calculations. Over 10,000 frames this may result
in up to 5% difference from the values calculated using 64-bit arrays.
To ensure higher-precision calculations for :class:`.DCDFile` instances,
you may use *astype* argument, i.e. ``astype=float``, to auto recast
coordinate data to double-precision (64-bit) floating-point format."""
[docs]def calcMSF(coordsets):
"""Calculate mean square fluctuation(s) (MSF)."""
try:
ncsets = coordsets.numFrames()
except AttributeError:
try:
coordsets = coordsets.getCoordsets()
except AttributeError:
pass
try:
ndim, shape = coordsets.ndim, coordsets.shape
except:
raise TypeError('coordsets must be a Numpy array or a ProDy '
'object with `getCoordsets` method')
if ndim != 3 or shape[0] == 1:
raise ValueError('coordsets must contain multiple sets')
msf = var(coordsets, 0).sum(1)
else:
nfi = coordsets.nextIndex()
natoms = coordsets.numSelected()
total = zeros((natoms, 3))
sqsum = zeros((natoms, 3))
LOGGER.progress('Evaluating {0} frames from {1}:'
.format(ncsets, str(coordsets)), ncsets,
'_prody_calcMSF')
ncsets = 0
coordsets.reset()
for frame in coordsets:
frame.superpose()
coords = frame._getCoords()
total += coords
sqsum += coords ** 2
ncsets += 1
LOGGER.update(ncsets, label='_prody_calcMSF')
LOGGER.finish()
msf = (sqsum/ncsets - (total/ncsets)**2).sum(1)
coordsets.goto(nfi)
return msf
calcMSF.__doc__ += _MSF_DOCSTRING
[docs]def calcRMSF(coordsets):
"""Returns root mean square fluctuation(s) (RMSF)."""
return calcMSF(coordsets) ** 0.5
calcRMSF.__doc__ += _MSF_DOCSTRING
[docs]def calcADPAxes(atoms, **kwargs):
"""Returns a 3Nx3 array containing principal axes defining anisotropic
displacement parameter (ADP, or anisotropic temperature factor) ellipsoids.
:arg atoms: a ProDy object for handling atomic data
:type atoms: :class:`~.Atomic`
:kwarg fract: For an atom, if the fraction of anisotropic displacement
explained by its largest axis/eigenvector is less than given value,
all axes for that atom will be set to zero. Values
larger than 0.33 and smaller than 1.0 are accepted.
:type fract: float
:kwarg ratio2: For an atom, if the ratio of the second-largest eigenvalue
to the largest eigenvalue axis less than or equal to the given value,
all principal axes for that atom will be returned.
Values less than 1 and greater than 0 are accepted.
:type ratio2: float
:kwarg ratio3: For an atom, if the ratio of the smallest eigenvalue
to the largest eigenvalue is less than or equal to the given value,
all principal axes for that atom will be returned.
Values less than 1 and greater than 0 are accepted.
:type ratio3: float
:kwarg ratio: Same as *ratio3*.
:type ratio: float
Keyword arguments *fract*, *ratio2*, or *ratio3* can be used to set
principal axes to 0 for atoms showing relatively lower degree of
anisotropy.
3Nx3 axis contains N times 3x3 matrices, one for each given atom. Columns
of these 3x3 matrices are the principal axes which are weighted by
square root of their eigenvalues. The first columns correspond to largest
principal axes.
The direction of the principal axes for an atom is determined based on the
correlation of the axes vector with the principal axes vector of the
previous atom.
.. ipython:: python
from prody import *
protein = parsePDB('1ejg')
calphas = protein.select('calpha')
adp_axes = calcADPAxes( calphas )
adp_axes.shape
These can be written in NMD format as follows:
.. ipython:: python
nma = NMA('ADPs')
nma.setEigens(adp_axes)
nma
writeNMD('adp_axes.nmd', nma, calphas)"""
linalg = importLA()
if not isinstance(atoms, Atomic):
raise TypeError('atoms must be of type Atomic, not {0}'
.format(type(atoms)))
anisous = atoms.getAnisous()
if anisous is None:
raise ValueError('anisotropic temperature factors are not set')
n_atoms = atoms.numAtoms()
axes = zeros((n_atoms*3, 3))
variances = zeros((n_atoms, 3))
stddevs = zeros((n_atoms, 3))
anisou = anisous[0]
element = zeros((3, 3))
element[0, 0] = anisou[0]
element[1, 1] = anisou[1]
element[2, 2] = anisou[2]
element[0, 1] = element[1, 0] = anisou[3]
element[0, 2] = element[2, 0] = anisou[4]
element[1, 2] = element[2, 1] = anisou[5]
vals, vecs = linalg.eigh(element)
# If negative eigenvalues are found (when ADP matrix is not positive
# definite) set them to 0
vals[vals < 0] = 0
variances[0] = vals
vals = vals**0.5
stddevs[0] = vals
axes[0:3, :] = vals * vecs
for i in range(1, n_atoms):
anisou = anisous[i]
element[0, 0] = anisou[0]
element[1, 1] = anisou[1]
element[2, 2] = anisou[2]
element[0, 1] = element[1, 0] = anisou[3]
element[0, 2] = element[2, 0] = anisou[4]
element[1, 2] = element[2, 1] = anisou[5]
vals, vecs = linalg.eigh(element)
# If negative eigenvalues are found (when ADP matrix is not positive
# definite) set them to 0
vals[vals < 0] = 0
variances[i] = vals
vals = vals**0.5
stddevs[i] = vals
# Make sure the direction that correlates with the previous atom
# is selected
vals = vals * sign((vecs * axes[(i-1)*3:(i)*3, :]).sum(0))
axes[i*3:(i+1)*3, :] = vals * vecs
# Resort the columns before returning array
axes = axes[:, [2, 1, 0]]
torf = None
if 'fract' in kwargs:
fract = float(kwargs['fract'])
assert 0.33 < fract < 1.0, 'fract must be > 0.33 and < 1.0'
variances = variances[:, [2, 1, 0]]
torf = variances[:, 0] / variances.sum(1) > fract
elif 'ratio' in kwargs or 'ratio3' in kwargs or 'ratio2' in kwargs:
if 'ratio2' in kwargs:
ratio = float(kwargs['ratio2'])
assert 0 < ratio < 1.0, 'ratio2 must be > 0 and < 1.0'
dim = 1
else:
ratio = float(kwargs.get('ratio', kwargs.get('ratio3')))
assert 0 < ratio < 1.0, 'ratio or ratio3 must be > 0 and < 1.0'
dim = 2
variances = variances[:, [2, 1, 0]]
torf = variances[:, dim] / variances[:, 0] <= ratio
if torf is not None:
torf = tile(torf.reshape((n_atoms, 1)), (1, 3)).reshape((n_atoms*3, 1))
axes = axes * torf
return axes
[docs]def calcADPs(atom):
"""Calculate anisotropic displacement parameters (ADPs) from
anisotropic temperature factors (ATFs).
*atom* must have ATF values set for ADP calculation. ADPs are returned
as a tuple, i.e. (eigenvalues, eigenvectors)."""
linalg = importLA()
if not isinstance(atom, Atom):
raise TypeError('atom must be of type Atom, not {0}'
.format(type(atom)))
anisou = atom.getAnisou()
if anisou is None:
raise ValueError('atom does not have anisotropic temperature '
'factors')
element = zeros((3, 3))
element[0, 0] = anisou[0]
element[1, 1] = anisou[1]
element[2, 2] = anisou[2]
element[0, 1] = element[1, 0] = anisou[3]
element[0, 2] = element[2, 0] = anisou[4]
element[1, 2] = element[2, 1] = anisou[5]
vals, vecs = linalg.eigh(element)
return vals[[2, 1, 0]], vecs[:, [2, 1, 0]]
[docs]def buildADPMatrix(atoms):
"""Returns a 3Nx3N symmetric matrix containing anisotropic displacement
parameters (ADPs) along the diagonal as 3x3 super elements.
.. ipython:: python
from prody import *
protein = parsePDB('1ejg')
calphas = protein.select('calpha')
adp_matrix = buildADPMatrix(calphas)"""
if not isinstance(atoms, Atomic):
raise TypeError('atoms must be of type Atomic, not {0}'
.format(type(atoms)))
anisous = atoms.getAnisous()
if anisous is None:
raise ValueError('anisotropic temperature factors are not set')
n_atoms = atoms.numAtoms()
n_dof = n_atoms * 3
adp = zeros((n_dof, n_dof))
for i in range(n_atoms):
anisou = anisous[i]
element = zeros((3, 3))
element[0, 0] = anisou[0]
element[1, 1] = anisou[1]
element[2, 2] = anisou[2]
element[0, 1] = element[1, 0] = anisou[3]
element[0, 2] = element[2, 0] = anisou[4]
element[1, 2] = element[2, 1] = anisou[5]
adp[i*3:(i+1)*3, i*3:(i+1)*3] = element
return adp
[docs]def calcInertiaTensor(coords):
""""Calculate inertia tensor from coords"""
coords = getCoords(coords)
center = calcCenter(coords)
coords = coords - center
return dot(coords.transpose(), coords)
[docs]def calcPrincAxes(coords, turbo=True):
"""Calculate principal axes from coords"""
M = calcInertiaTensor(coords)
_, vectors = solveEig(M, 3, zeros=True, turbo=turbo, reverse=True)
return vectors