Optimize Conformations¶
In this part we will optimize the geometries of conformations generated in the previous step using NAMD.
Configuration¶
Let’s find the location of NAMD executable:
In [1]: from prody.utilities import which
In [2]: namd2 = which('namd2')
In [3]: namd2
Out[3]: '/usr/local/bin/namd2'
We will need a force field file for energy minimization. VMD ships with CHARMM force field files. We can write a tcl script to find and write their location as follows:
In [4]: tcl_cmd = '''package require readcharmmpar
...: package require readcharmmtop
...: global env
...: set outfile [open charmmdir.txt w]
...: puts $outfile $env(CHARMMPARDIR)
...: puts $outfile $env(CHARMMTOPDIR)
...: close $outfile
...: exit'''
...:
In [5]: with open('where_is_charmmpar.tcl', 'w') as inp:
...: inp.write(tcl_cmd)
...:
This can be run in vmd from ipython as below:
In [6]: !vmd -dispdev text -e where_is_charmmpar.tcl
/usr/local/lib/vmd/vmd_LINUXAMD64: /usr/lib/x86_64-linux-gnu/mesa/libGL.so.1: no version information available (required by /usr/local/lib/vmd/vmd_LINUXAMD64)
Info) VMD for LINUXAMD64, version 1.9.3 (November 30, 2016)
Info) http://www.ks.uiuc.edu/Research/vmd/
Info) Email questions and bug reports to vmd@ks.uiuc.edu
Info) Please include this reference in published work using VMD:
Info) Humphrey, W., Dalke, A. and Schulten, K., `VMD - Visual
Info) Molecular Dynamics', J. Molec. Graphics 1996, 14.1, 33-38.
Info) -------------------------------------------------------------
Info) Multithreading available, 16 CPUs detected.
Info) CPU features: SSE2 AVX
Info) Free system memory: 58GB (91%)
Info) No CUDA accelerator devices available.
Info) Dynamically loaded 2 plugins in directory:
Info) /usr/local/lib/vmd/plugins/LINUXAMD64/molfile
1.3
1.2
file4
Info) VMD for LINUXAMD64, version 1.9.3 (November 30, 2016)
Info) Exiting normally.
vmd >
We then read the output file to get the parameter directory:
In [7]: inp = open('charmmdir.txt', 'r')
In [8]: lines = inp.readlines()
In [9]: inp.close()
In [10]: import os
In [11]: par = os.path.join(lines[0].strip(), 'par_all27_prot_lipid_na.inp')
In [12]: top = os.path.join(lines[1].strip(), 'top_all27_prot_lipid_na.inp')
In [13]: par
Out[13]: '/usr/local/lib/vmd/plugins/noarch/tcl/readcharmmpar1.3/par_all27_prot_lipid_na.inp'
In [14]: top
Out[14]: '/usr/local/lib/vmd/plugins/noarch/tcl/readcharmmtop1.2/top_all27_prot_lipid_na.inp'
To configure this computer
Let’s make a folder for writing optimization input and output files:
In [15]: mkdir -p p38_optimize
We will write an NAMD configuration file for each conformation based
on min.conf
:
In [16]: import glob
In [17]: conf = open('conformational_sampling_files/min.conf').read()
In [18]: for pdb in glob.glob(os.path.join('p38_ensemble', '*.pdb')):
....: fn = os.path.splitext(os.path.split(pdb)[1])[0]
....: pdb = os.path.join('..', pdb)
....: out = open(os.path.join('p38_optimize', fn + '.conf'), 'w')
....: out.write(conf.format(
....: out=fn, pdb=pdb,
....: par=par))
....: out.close()
....:
Optimization¶
Now we will run NAMD to optimize each of these conformations. We make a list of commands that we want to execute:
In [19]: os.chdir('p38_optimize') # we will run commands in this folder
In [20]: cmds = []
In [21]: for conf in glob.glob('*.conf'):
....: fn = os.path.splitext(conf)[0]
....: cmds.append('namd2 ' + conf + ' > ' + fn + '.log')
....:
In [22]: cmds[:2]
Out[22]: ['namd2 p38_28.conf > p38_28.log', 'namd2 p38_13.conf > p38_13.log']
We will run these commands using multiprocessing
module. We will
allocate 3 processors for the job:
In [23]: from multiprocessing import Pool
In [24]: pool = Pool(3) # number of CPUs to use
In [25]: signals = pool.map(os.system, cmds)
signals
will collect the output from execution of NAMD. If everything goes
right, we should have only 0s.
In [26]: set(signals)
Out[26]: {0}
All NAMD output should be in p38_optimize
folder. We go back to
origional folder as follows:
In [27]: os.chdir('..')